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Abstract. This paper examines the relationship between Indian equity prices other developed 
markets, in the time-scale domain, using wavelets based multiscale analysis and cross wavelet 
analysis. Stock markets are analyzed at different levels of resolution which makes it possible to 
perform a scale by scale analysis enabling us to detect the correlation and cross-correlation 
structures at time periods with high frequency oscillations and also the relatively low frequency 
structures. There seems to be a weak integration between BSE and other developed markets at 
almost all levels of time-scale resolution and a strong relationship between French and German 
Markets. Analyzing the stock returns at different multiscale resolution makes it easier for agents 
dealing with different trading horizons.  
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Introduction 

Frequency domain techniques like spectral analysis and Fourier based methods are more 
suited to study economic and financial datasets that exhibit a cyclical behavior. Fourier 
methods allow us to analyze the frequency components of the time-series by enabling us 
to quantify the importance of various frequency components of the time-series under 
investigation. This provides the researcher access to particular frequency information 
about the time-series, which makes it easier to infer certain information like the length of 
a business cycle and the phase lag behavior of the time-series, Masset (2008). But, 
spectral methods require the data to be stationary, and very often, in the case of economic 
and financial data, there is a presence of strong non-stationary pattern; e.g. long-memory, 
jumps etc. in case of the presence of volatility. Also, the time information is completely 
lost and the assumption of natural periods and stationarity are problematic since 
economic time-series is characterized by variation in frequencies and non-natural periods.  
These drawbacks of spectral methods are easily mitigated by the use of time-scale 
decomposition techniques using wavelet base multiresolution analysis, as wavelet 
analysis possesses the ability to separate the dynamics in a time-series over different time 
scales and horizons. A time-series signal, at first observation, might look stationary but a 
deeper analysis of the signal with excellent time localization, made possible by the use of 
windowed Fourier transforms of wavelet filters, might help detect the presence of 
discontinuities. Hence, at a finer and detailed level of signal analysis, presence of non-
stationarity could be detected, Capobianco (2000). 

Therefore, multiresolution analysis, which by allowing us to analyze the data at different 
scales of resolution, is definitely a good choice for economic and financial time-series 
analysis as it gives us the information about both time-space and frequency-varying 
components of the signal. The information extracted using highly time-localized wavelet 
windows, from non-stationary financial time-series, can be very useful due to the 
importance of the information available from the local features of the signal. Wavelet 
methods, therefore, are most suitable for the analysis of non-stationary financial and 
economic time-series due to its capability of breaking down the information into different 
layers of resolution and its time-scale localization properties. Moreover, wavelets are very 
handy in spotting the exact location in time of regime shifts, discontinuities, and isolated 
shocks to the dynamical system, Ramsey (1998). The capability of wavelet analysis to 
decompose a time-series on different time scales and at the same time preserve time 
localization is one of the main reasons for its induction into economic and financial 
research. One possesses a better understanding about the time-series and the dynamic 
market mechanisms behind the time-series by analyzing the time-series at different levels of 
resolution. This framework of analysis also allows us to isolate many interesting structures 
and other features of economic and financial time-series, which previously would not have 
been possible by the use of traditional time domain and Fourier based methods.  

The increasing interest, in wavelet analysis, by economic researchers, and its applicability 
in areas like time-scale decomposition, forecasting, density estimation etc. have led to the 
emergence of various wavelet based techniques for the analysis of non-stationary 
financial time-series, Crowley (2005). Wavelet based multiresolution analysis is ideal for 
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the analysis of high frequency data generated by financial markets, providing valuable 
information for trading decisions, as the analyst can focus on a particular time scale 
where trading patterns are considered important. Therefore, wavelet analysis has 
tremendous potential in economics and finance, as relationships between different 
variables can be analyzed in time-frequency space, allowing one to analyze the 
relationships between variables at different frequencies and, simultaneously, the 
corresponding information about the evolution of a variable in time.     

The application of wavelet theory was limited to the analysis of deterministic functions, 
as most of it was applied in the areas of engineering and the natural sciences. The 
application of wavelet analysis to study the behavior of stochastic processes, which 
characterize the underlying system in economics and finance, is relatively new. In the 
next section we review some of the important contribution of wavelet based methods to 
the field of economic and financial research.  

 

Literature review 

The Nineties saw the introduction of wavelet based approaches in statistics. Nason and 
Silverman (1994) introduced discrete wavelet transforms for statistical applications. 
Percival and Walden (2000), provides a detailed introduction to wavelets methods for time-
series analysis. The maximal overlap discrete wavelet transform (MODWT), Percival and 
Walden (2000), is particularly suitable in analyzing economic and financial data. This 
method is a modification of the discrete wavelet transform where the transform loses the 
property of orthogonality, but since it has the ability to analyze non-dyadic processes; it is 
very much suited for the analysis of financial time-series. Correlation analysis in state-space 
is made possible by wavelet coherence analysis, Grinsted et al. (2004).  

The application of wavelet methods, particularly in the field of economics and finance, is 
described by Gencay et al. (2001). High frequency foreign exchange rates were analyzed 
by Ramsey and Zhang (1995) using waveform dictionaries and a matching pursuit 
algorithm. Ramsey and Lampart (1998) found that the relationship between money and 
income varies according to scale. At higher scale levels, money supply Granger caused 
income and at lower scale, income granger caused money supply. The multiresolution 
analysis of high frequency Nikkei stock market data, using the matching pursuit 
algorithm of Mallat and Zhang (1993), is carried out by Capobianco (2004). Hidden 
periodic components are unearthed using the algorithm.  

Maximal overlap discrete wavelet transform is applied by Crowley and Lee (2005) to 
analyze the frequency components of European business cycles. Date from countries with 
lesser degree of integration exhibited non-similar frequency components.  The lead-lag 
relationship between the Dow Jones Industrial Average stock price series and the index of 
industrial production series of the US is analyzed by Gallegati (2008), using wavelet 
correlation and cross-correlation methods. At lower frequencies, stock market returns 
lead economic activity as reflected in IIP series. Since increase in timescale is associated 
with lower frequency bands, the leads in stock market returns increases with the increase 
in scale.   
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Conraria and Soares (2011) study business cycle synchronization across the European 
union-15 and Euro-12 countries using wavelet analysis. France and Germany are found to 
be highly synchronized with other European countries and French business cycle leads 
German business cycle as well as the business cycles from the rest of the European 
countries.   

The comovements between the stock markets of the US, Germany, UK and Japan were 
analyzed by Rua and Nunes (2009) using wavelet coherence analysis. Market 
interdependencies were found to change across frequencies and along the time horizon. 
Strongest comovements were observed between the markets of US and Europe, and the 
coherence between US-Germany and UK-Germany increased in time. 

Barunik et al. (2011) used wavelet coherence analysis to study the time-scale dynamics of 
local correlations between Central European and Western European stock markets. The 
interdependencies between major European markets were found to change significantly in 
time and across scales.   

The study of correlation structure between S&P 500 and other international markets was 
carried out by Benhmad (2013) using wavelet analysis. The co-movements of stock 
market were found to be a function of scale, apart from its dependence on time dynamics. 
S&P 500 and European stock markets were found to exhibit strong interdependencies, 
which changed according to changes in time-scale. The next section gives a brief review 
of the methodology used in this analysis which will be followed by its use in analyzing 
equity prices, some empirical evidences and conclusions.   

 

Methodology 

A wavelet is a function (.)  defined on the real line , such that ( ) 0t dt   and

2
( ) 1t dt





 . A signal can be decomposed into its finer detail and smoother 

components by projecting the signal onto mother and father wavelets given by   and   

respectively. Dilation and translation operation is performed on both mother and father 

wavelets to form a basis for the space of squared integrable function, 2 ( )L . Therefore, 

any function ( )x t   in 2 ( )L  can be represented as linear combinations of these basis 

functions. The dilated and translated versions of mother and father wavelets are denoted 
by , ( )b s t  and , ( )b s t  respectively, where 
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s and b represents the scaling (dilation) and translation parameter, respectively. Here 
s = 1,…, S controls the number of multiresolution elements. Formally, a function ( )x t  

can be represented in the wavelet space as  

, , , , 1, 1, 1, 1,( ) ( ) ( ) ( ) ... ( )S b S b S b S b S b S b b b
b b b b

x t a t d t d t d t                      (3)    

where ,S ba are coefficients describing coarser features of ( )x t , and ,s bd  are detail 

coefficients that captures information from multiple resolutions or time-horizons.  

Wavelet based correlation and cross-correlation 

Let 1, 2,( , )t t tX x x  be a “bivariate stochastic process with univariate spectra” (autospectra) 

1( )S f  and 2 ( )S f respectively, and let , 1, , 2, ,( , )s b s b s bW w w  be the scale s wavelet 

coefficients computed from tX . These wavelet coefficients are obtained by applying the 

wavelet transform to all elements of tX . The obtained wavelet coefficient contains both 

,S ba (coarser approximations) and ,s bd (wavelet details). For a given scale s, the wavelet 

covariance between 1,tx  and 2,tx  is given by 

1, , 2, ,

1
( ) ( , )

2X s b s bs Cov w w


                                                                                    (4) 

The wavelet covariance “decomposes the covariance of a bivariate process on a scale-by-
scale basis”, i.e.  

1, 2,
1

( ) ( , )X t t
s

s Cov x x




                                                                                          (5) 

By introducing an integer lag   between 1, ,s bw and 2, ,s bw , the notion of wavelet cross-

covariance can be introduced, and is given by  

, 1, , 2, ,

1
( ) ( , )

2X s b s bs Cov w w 
                                                                               (6) 

In some situations it may be beneficial to normalize the wavelet covariance by wavelet 
variance, which gives us wavelet correlation  

1 2

( )
( )

( ) ( )
X

X

s
s

s s


 

                                                                                                 (7) 

where 2
1 ( )s  and 2

2 ( )s  are the wavelet variances of 1,tx  and 2,tx (at scale s), 

respectively. Just like the usual correlation coefficient between two random variables, 

( ) 1X s  . However, wavelet correlation gives correlation among variables from a 
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multiscale dimension Also, by allowing the two processes 1,tx  and 2,tx to differ by an 

integer lag  , we can define wavelet cross-correlation, which gives us the lead-lag 
relationship between two processes, on a scale-by scale basis. The approximate 
confidence bands for the estimates of wavelet correlation and cross-correlation is given in 
Percival and Walden (2000) and Gencay et al. (2002). Moreover, the reader is referred to 
Fernandez-Macho (2012) for the technique of wavelet multiple correlation (WMC) and 
multiple cross-correlation (WMCC).  

 

Empirical data 

The data used for this study comprises of BSE sensitive index and four other indices from 
the developed markets. BSE sensitive index constitutes 30 Clue Chip securities traded in 
Bombay stock exchange, and represents major portion of BSE in terms of market 
capitalization. We use BSE 30 series against Shanghai stock exchange (SSE) and four 
developed stock market indices, viz., FTSE 100 index of the UK, Nikkei 225 of Tokyo 
stock exchange, CAC40 of France and DAX index of Germany. The series used for our 
study is the closing price level series. The study period spans over a period of January 
2000 to March 2013, thus involving around 3330 data points, which provides a fairly rich 
data set for our analysis. 

 

Empirical results 

The daily stock market returns are decomposed applying the MODWT with the D(4) 
Daubechies wavelet filter, with decomposition up to six levels of resolution. 

Figure 1 shows the wavelet correlation between SSE and BSE. The wavelet correlations 
between SSE and BSE are all low, across all six scales, with negative correlations for the 
first two and a half scales which correspond to a period of 8-16 days. The correlations 
tend to increase as scale increases, but since the lower confidence band lie below zero 
across all scales, there is no significant correlation between SSE and BSE. See Table 1 
for the values of wavelet correlation across all the six scales. 

Figure 2 shows the wavelet cross correlation between SSE and BSE.  Wavelet cross 
correlation is performed between SSE and BSE, with leads and lags up to 36 months. The 
variable that maximizes the correlation, as against the other variable, is shown in the 
upper-left portion of all figures. The cross correlations are all near zero, across all six 
scales for all lags, which signals a very weak cross correlation between SSE and BSE. 
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Figure 1. Wavelet correlation between SSE and BSE 

 

Figure 2. Wavelet cross-correlation between SSE and BSE 

 

Figures 3 and 4 shows the wavelet correlation and wavelet cross-correlations between 
FTSE and BSE respectively. There is no significant correlation between FTSE and BSE 
and no significant cross correlations too as the cross correlations are all near zero, across 
all scales for all lags. This indicates a weak integration between FTSE and BSE. Similar 
results hold for wavelet cross correlations between CAC40 and BSE.  
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Figure 3. Wavelet correlation between FTSE and BSE 

 
Figure 4. Wavelet cross-correlation between FTSE and BSE 

 

Figure 5 displays the wavelet cross correlations between NIKKEI225 series and the BSE 
series. 

The first two levels, associated with periods of 2-4 and 4-8 days (intra-week and weekly 
scales), shows many lags converging towards zero and many lags different from zero but all 
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positive. The lags where wavelet correlations are positive, and different from zero, lie 
around the zero axes. However, the correlations are not statistically significant as the plot of 
lower confidence band lie below the zero axes.  We see no significant correlations at level 
three, except a slight correlation at around lag -20. There is a slight correlation between the 
BSE series and the NIKKEI series at lag 24 at level four, but no correlation at other lags. As 
we move towards higher levels of resolution we see increasing correlations between BSE 
and NIKKEI.  Some positive cross correlations around lag 24 is observed at level six which 
correspond to a period of 64-128 days(quarterly to biannual scales).    

Figure 5. Wavelet correlation between NIKKEI225 and BSE 

 

Figure 6 shows the wavelet correlation between DAX and CAC. The wavelet correlations 
between DAX and CAX are positive but low, across the first and second level of 
resolution which corresponds to intra-week and weekly scales. There is an increase in 
wavelet correlation at the third level which corresponds to a period of 8-16 days. At level 
four, which covers the monthly scale, we see a sharp drop in correlation. However, we 
see a significant rise in correlations at the next two levels of decomposition which 
roughly corresponds to a period of 64-128 days (quarterly to biannual) and 128-256 days 
(biannual scale). The correlations tend to increase as we look at higher levels of 
decomposition, except a decrease in correlations at monthly scale analysis. This shows 
the strong integration between these two markets, with good market integration at 
quarterly to annual scales.   

Figure 7 shows the wavelet cross correlation between DAX and CAC.  Wavelet cross 
correlation is performed between DAX and CAC, with leads and lags up to 36 months. 
The variable that maximizes the correlation, as against the other variable, is shown in the 
upper-left portion of all figures. Wavelet cross correlation analysis at level 1 and level 2 
reveal some significant correlation at lags 10, 11 and 12. As we increase the resolution 
level, there seems to be a slight increase in cross correlations with correlations oscillating 
between zero lag up to one year in the future.  Statistically significant cross correlations 
are observed after increasing the level of decomposition, with strong cross correlations at 
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level 5 and level 6, for almost all leads and lags. This suggests weak but positive 
correlations between DAX and CAC when the analyses are performed at smaller levels of 
resolution (intra –week and weekly period), but higher cross correlations when time 
scales are increased for analyzing the data at quarterly, biannual and annual periods. This 
further gives us some evidence about good market integration between DAX and CAC. 

Figure 6. Wavelet Correlation between DAX and CAC 

 
Figure 7. Wavelet Cross-Correlation between DAX and CAC 
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Conclusion 

Traditional methods like spectral analysis works by projecting the time series data into a 
set of sines and cosines, wherein the output signal  is a function  of frequency only. As a 
result the time information is completely lost. This problem is resolved by using wavelets 
based decomposition where the output signal is a function of both time and scale, 
providing us with simultaneous information from both time and frequency domains. This 
approach helps us to decompose the one dimensional time series data into a time-
frequency plane by projecting the time signal into a set of orthogonal wavelet basis 
functions. 

Therefore, a Time-scale decomposition of Bombay stock exchange (BSE) stock returns 
and returns from other select international markets, using wavelet based multiresolution 
analysis, is performed.   Wavelet correlation analysis is used to analyze the correlation 
structure between BSE and stock exchanges from China, France, Germany and Japan. 
Very weak correlation between BSE and Chinese stock returns (SSE) are recorded at all 
levels of decomposition. The correlations tend to increase as we increase the timescale of 
analysis, but no statistically significant correlations are recorded. Wavelet cross-
correlation between BSE and SSE, at all leads and lags, are very weak as all correlations 
lie near zero at all levels of resolution.  This indicates a weak integration between BSE 
and SSE stock markets.  Same holds true for analyses of BSE performed with FTSE 
(London stock exchange) and CAC40 (French stock market index) stock returns.   Some 
positive cross correlations around lag 24 is observed at level six which correspond to a 
period of 64-128 days(quarterly to biannual scales).   BSE seems to be slightly correlated 
with NIKKEI (Tokyo stock exchange) at a resolution of level six, which corresponds to 
quarterly-biannual scales. On the other hand, French and Markets are highly integrated as 
wavelet correlation and wavelet cross correlations (at most of the leads and lags) are 
positive and increases significantly with the increase in the level of resolution.  

This approach allows us to detect changes in stock market behavior from a time-scale 
perspective where the data can be analyzed at different time horizons. The dynamics of 
stock returns can be studied by decomposing the stock returns into several layers of time-
scale resolution (i.e. Short time period analysis to long period analysis), which can 
provide useful insights for investors with different trading horizons in mind.  

 

Tables showing wavelet correlations between pairs of select markets 

Table 1. Wavelet Multiple correlation between SSE and BSE 
          Levels      WMC LowerCI UpperCI 
1 0.04459197 0.003469 0.0924478 
2 0.06445618 0.003527 0.131846 
3 0.05794457 0.038415 0.1532365 
4 0.03965149 0.096912 0.17475 
5 0.15121177 0.042618 0.3340713 
6 0.13002267 0.148134 0.3891159 
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Table 2. Wavelet Multiple correlation between FTSE and BSE 
        Levels         WMC LowerCI UpperCI 
1 0.003968619 0.044094 0.0520126 
2 0.019467548 0.048564 0.0873194 
3 0.085205468 0.011031 0.1798775 
4 0.059260635 0.077405 0.1937399 
5 0.026907131 0.166544 0.2183638 
6 0.125241818 0.152884 0.384984 

 
Table 3. Wavelet Multiple correlation between CAC40 and BSE 

      WMC LowerCI UpperCI 
1 0.0135397 0.03454 0.061554 
2 0.00318541 0.0648 0.071137 
3 0.04259046 0.05378 0.13817 
4 0.09077961 0.04583 0.224054 
5 0.13911413 0.05495 0.323047 
6 0.04646006 0.22935 0.315362 

 
Table 4. Wavelet Multiple correlation between DAX and NIKKEI 

Levels WMC LowerCI UpperCI 
1 0.003132742 -0.044928 0.0511789 
2 0.04663081 -0.021404 0.1142362 
3 0.018538062 -0.077746 0.1144796 
4 0.054547953 -0.082102 0.1891852 
5 0.060086397 -0.134053 0.2497841 
6 0.193326789 -0.084006 0.4428622 

 
Table 5.  Wavelet Multiple correlation between FTSE and NYSE 

     Levels WMC LowerCI UpperCI 
1 0.002823504 -0.04524 0.050871 
2 0.00777433 -0.06022 0.075702 
3 0.048070075 -0.0483 0.143552 
4 0.185210195 0.05044 0.313356 
5 0.254215066 0.064799 0.425949 
6 0.741953405 0.588139 0.843968 

 
Table 6.  Wavelet Multiple correlation between NIKKEI225 and BSE 

Level WMC LowerCI UpperCI 
1 0.03916004 0.008911 0.0870501 
2 0.02897762 0.039067 0.0967545 
3 0.03802189 0.058337 0.1336788 
4 0.04423065 0.092366 0.1791935 
5 0.04195577 0.15186 0.232664 
6 0.03748039 0.237853 0.3072382 

 
Table 7. Wavelet Multiple correlation between CAC and DAX 

Levels WMC LowerCI UpperCI 
1 0.10778593 0.060043 0.1550368 
2 0.11706433 0.0494907 0.1835711 
3 0.30788209 0.2181954 0.3924117 
4 0.06419309 -0.072481 0.1985007 
5 0.50388835 0.3447563 0.6348672 
6 0.77502356 0.6368115 0.8649775 
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Table 8. Wavelet Multiple correlation between FTSE and CAC 
Levels WMC LowerCI UpperCI 
1 0.023040084 -0.025042 0.0710154 
2 0.008664079 -0.059338 0.0765864 
3 0.094352935 -0.001809 0.188786 
4 0.149253908 0.0134866 0.2796175 
5 0.145565312 -0.048379 0.3289322 
6 0.082871054 -0.194426 0.3479034 

 
Table 9.  Wavelet Multiple correlation between FTSE and DAX 

Levels WMC LowerCI UpperCI 
1 0.02509043 -0.022991 0.0730563 
2 0.06944789 0.0014875 0.1367697 
3 0.12349066 0.0276736 0.2170591 
4 0.04023634 -0.096332 0.1753178 
5 0.01581551 -0.177313 0.2077709 
6 0.34130332 0.0754285 0.5618701 
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