
e 
 

 
 

 
 

 
 

Posted offers in exogenous networks:  
A theoretical application and experimental results(1) 

 
 

Lisa BREGER 
University of Wisconsin, River Falls, USA 

lisa.breger@uwrf.edu 
Andrea SORENSEN 

Southern Illinois University, Carbondale, USA 
sorensen@siu.edu 

 
 

Abstract. The Federal Communications Commission (FCC) allocates bands of radio frequency on 
the electromagnetic spectrum to agents called primary users (PUs), typically through standard 
auctions.  We devise ways for unused channels to be sold in a secondary market to secondary users 
(SUs) who do not have licensing rights to access the spectrum. We propose a model in which PUs 
can set prices and offer unused channels to SUs, where trading takes place in small exogenous 
networks. Equilibrium prices depend on both the structure of the network and buyer valuation, and 
interestingly, “good” buyer location on the network is not always favorable. In equilibrium, buyers 
with many connections on the network can face high prices despite seller competition and can even 
face two prices in equilibrium. We test this model in an experiment, varying network structure and 
price possibilities across a total of four experimental sessions. Our results provide evidence that 
buyers in good locations often face high prices despite seller competition and that buyers in bad 
locations also face high prices but have the benefit of being served first in the market. 
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Introduction 

The Federal Communications Commission (FCC) regulates the use of radio spectrum by 
allocating radio frequency to licensed users, called primary users. Non-licensed, or 
secondary, users wish to use the spectrum but cannot do so legally without purchasing the 
licensing rights from primary users. Therefore, it is economically beneficial to devise ways 
for primaries to sell off unused radio frequency to secondaries. 

In this paper, we consider a small partially linked network of primary and secondary users 
who can benefit from trade. Trade can occur between the two when the two are linked. 
Links are defined by the respective locations of primary users and secondary users, and are 
therefore exogenous. That is, a secondary user may be in a location that overlaps the 
licensing area of a primary user and can therefore gain access rights to this primary’s 
spectrum through trade. This overlap defines a link between the two users. Since some 
secondary users overlap with multiple primaries, while others overlap with just one, we 
focus on partially linked networks. 

In such networks, we let primary users set prices for unused radio frequency and make 
offers to the secondary users, which can be accepted or rejected. Prices are dependent on 
two factors. First, primary users have a belief about how secondary users value the 
frequency. Second, prices are dependent on the respective locations of primary and 
secondary users. We propose that it is possible for a buyer to face two different prices in 
equilibrium and that buyers with just one access point always face high prices but are given 
priority over buyers who have many options to trade. Further, under certain 
parameterizations, buyers in good locations face high prices despite their many connections 
in the network. 

 

Literature Review 

The problem of spectrum allocation in cognitive radio networks has been studied widely in 
the electrical engineering literature. Many of these studies use game theoretic concepts to 
describe how spectrum channels are shared and traded (Maharjan et al., 2011; Niyato and 
Hossain, 2007; Niyato et al., 2009). This problem continues to be of interest for economists 
in developing ways for spectrum to be sold in a market of multiple buyers and sellers. 
While several authors have used auctions to analyze spectrum trading(2), another avenue is 
to consider trading between buyers and sellers in small exogenously given networks (see 
Corominas-Bosch, 2004 for bargaining results in such networks). Cao and Zheng (2005) 
use a bargaining model that maximizes fairness in networks. There are some practical 
limitations to using private markets to allocate spectrum rights, namely the assumption that 
markets will improve the efficiency of allocation (Levin, 1970; Melody, 1980). In this 
analysis, we are less concerned with the efficiency of allocation and more concerned with 
how specific market structures influence price-setting when agents are allowed to trade 
over an exogenous network. 

Kranton and Minehart (2003) describe the formation of a buyer-seller network that allows 
trade to occur between linked agents. This research emphasizes that a specific link pattern 
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influences trading. While their focus is on the efficient formation of links, we consider 
exogenous links between primary users (PUs) and secondary users (SUs) that are given by 
their respective locations and show that equilibrium prices are dependent on these location 
restrictions. 

The model that we propose extends the research of Zhang and Zhou (2014). They use 
simulations to predict the convergence of prices of spectrum channels that depends on the 
location of PUs and SUs. We study a similar environment with overlapping licensing rights 
between PUs and SUs and use a game theoretic approach which supports their results. 
Specifically, we find that location restrictions are driving prices in equilibrium. Kasbekar 
and Sarkar (2010; 2011) define equilibrium conditions when there is uncertainty of 
bandwidth availability among primary users. Our model does not account for this type of 
uncertainty, but can be easily extended to do so, in which case, similar results arise. 

Trading Model 

We propose a model of spectrum allocation that takes the form of a one-shot interaction 
between primary users (PUs) and secondary users (SUs). We analyze such interactions in 
a network setting, where a transaction between PUs and SUs only occurs when there is a 
link between them. Primary users have a license to use spectrum channels over a particular 
geographical area, and secondary users may or may not have permission to access these 
channels because of their location. Therefore, links can be informally thought of as 
location-based restrictions. 

To formalize the trade network of PUs and SUs, we start by defining a partially linked 
network structure consistent with Kranton and Minehart (2003). We say that a PU and SU 
are linked if there is a possible trade that can occur between the two because they are in the 
same location or market. Such links break down when PUs learn they have no units of 
bandwidth available to sell, or when the two users are in different locations. Thus, buyers 
and sellers are part of an exogenously determined network. We say a secondary user is a 
single-linked buyer if he is linked to exactly one primary. A secondary user is a multi-
linked buyer if he is linked to two or more primaries. A group of secondaries forms an 
outside market if each secondary in the group is a single-linked buyer. In Figure 1, SU1 and 
SU3 form an outside market because they have a link to only one primary user in the 
network. 

Figure 1. Partially linked network with overlap over two licensed areas (PU1 and PU2)  
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Figure 1 shows a partially linked network structure with two primary users who have an 
overlapping licensing area. Here, we illustrate how the location of licensing areas 
exogenously forms the trade links between buyers and sellers.  

Consider a network of 𝑀 ൌ ሼ1, 2, … , 𝑗, … 𝑚ሽ  primary users and 𝑁 ൌ ሼ1, 2, … , 𝑖, … 𝑛ሽ 
secondary users. Let each primary user j have a supply of 𝑠௝ ൒ 0 units available and each 
secondary user i have a demand of 𝑑௜ ൒ 0 units. Suppose that a secondary user values an 
additional unit of spectrum the same as any previous unit. 

We assume a secondary user i values the good at  

𝑉௜ ൌ ൜
𝑣ு      𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑞

 𝑣௅   𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 െ 𝑞 

and that the expected payoff to a primary user of offering a high price is at least as good as 
the certain payoff of offering a low price. In other words, 𝑞𝑉ு ൒ 𝑉௅. After learning whether 
they have units available to sell, primary users offer these units strategically to buyers at a 
price p that maximizes their expected profits. A buyer i will accept the offer and purchase 
the good if the price is set such that 𝑝 ൑ 𝑉௜. 

If the offer is accepted, the buyer receives a payoff of 𝑉௜ െ 𝑝. Therefore, a buyer could 
potentially receive a surplus if he is given a low price offer but he has a high valuation for 
the good. If the offer is rejected, no transaction occurs and both parties receive nothing. We 
assume asymmetric supply (demand) among PUs (SUs), and PUs know how many units 
each SU demands and how many units other PUs have to sell. 

Primary users make simultaneous offers. At a certain time, all PUs realize how many 
unused channels they have available to sell to potential buyers. Each unused channel can 
be sold and used during a particular time slot, and PUs choose how to spread the time slots 
out over buyers to limit the amount of interference over the frequency. Each seller chooses 
at once how many units to offer to any buyer(s) with whom he is connected, and in which 
order the respective buyers can purchase and use the channel. In other words, if a seller 
chooses to sell 2 units to a single buyer, the seller must choose a price for each unit and the 
units are spread out over the first two available time slots. With this offer structure, 
secondary users are limited to which channels they will have access to at which time, and 
will accept or reject each unit as the channels become available to them. 

A secondary user, at any given time, must compare the units he has been offered for that 
particular time slot as he may be offered two channels by two different sellers for the same 
slot. A buyer accepts the unit at the lowest price and rejects any units at a high price if his 
valuation is low. If a buyer rejects an offer, the time expires and the seller can no longer 
offer the channel to another buyer. Since buyers are indifferent between radio channels, a 
buyer will choose at random who to purchase from when he is offered multiple units at the 
same price by different sellers.   

A couple of results arise immediately out of the assumptions we have made about buyer 
valuations and the specific offer structure. First, since single-linked buyers are segregated 
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in the link structure (by location), the PUs hold a monopoly over those buyers and have an 
incentive to charge a monopoly price (𝑝 ൌ 𝑉ுሻ. 

Proposition 1. A single-linked buyer will always be offered a high price in the one-shot 
game. 

Proof. Proposition 1 follows directly from the assumption that the expected profit of 
offering a high price is at least as good as the expected profit of offering the low price to 
any buyer ሺ𝑞𝑉ு ൒ 𝑉௅ሻ. 

This result holds for a one-shot interaction between a buyer and seller. If we consider a 
case where the PU offers the high price in the first period and the offer is rejected, the PU 
quickly learns the buyer’s value and offers the competitive price in future periods. A second 
result is that the outside market is given priority by the PUs. If the outside market demands 
enough units, the PUs linked to this market will try to meet that demand before they start 
offering units to multi-linked buyers. This leads us to Proposition 2. 

Proposition 2. A primary user sells as many units as possible to their outside market at the 
high price and offers the remaining units to multi-linked buyers. 

Proof. Consider any single unit offered to the outside market by a PU at the high price.  

The PU’s expected profit from this unit is 𝑞𝑉ு. We wish to show that this PU could not 
receive a higher expected profit by instead offering this unit to a multi-linked buyer. 
Suppose the PU did offer this unit to a multi-linked buyer, then their payoff from a low 
price offer would be at most 𝑉௅ (if any other offers for this time slot of this buyer are at the 
high price). Since 𝑞𝑉ு ൒ 𝑉௅, the PU is not better off. If instead the PU offered this unit to 
the multi-linked buyer at the high price, then their expected payoff from this unit would be 
at most 𝑞𝑉ு (if no other PUs make offers to this buyer for this time slot), which is still not 
better than offering to the outside market. Thus, a PU will sell as many units as possible to 
the outside market before making offers to multi-linked buyers. 

These propositions serve to illustrate the importance of the link structure and how location-
based restrictions can both benefit (by giving priority) and harm (by constraining a high 
price offer) the single-linked buyers. They also point to the fact that there is a possibility 
that multi-linked buyers would be completely ignored by sellers if the demand of the 
outside market is high enough. 

The next part of our analysis illustrates how prices are determined in equilibrium for multi-
linked buyers when there is asymmetric demand and supply. In a fully linked network 

structure, it is possible for the price to be driven down for all buyers when 𝑉௅ ൐
ଵ

ଶ
𝑞𝑉ு and 

when each seller can meet the full demand of each buyer to which they are linked. When 
we see complete overlap of licensing areas, all buyers can benefit from competition and 
possibly receive a surplus if they value the good highly. However, in our model, we 
examine partially overlapping networks where only some buyers can benefit from 
competition, and even in these cases, it is likely for buyers to face high prices (i.e. when 

𝑉௅ ൑
ଵ

ଶ
𝑞𝑉ு). 
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Consider an example (Figure 2) where we have two sellers and three buyers with 
asymmetric demand and supply. 

Figure 2. Partially linked networks with asymmetric demand and supply 

 

 

 

 

 

 

 

 

Example 1 

In Figure 2 the link structure is such that SU1 forms an outside market. According to the 
first two propositions, PU1 offers 2 units at the high price to SU1 and has 2 (left) or 5 (right) 
units remaining to offer to the multi-linked buyers.  

First looking at the scenario on the right, notice that both PU1 and PU2 have enough 
remaining units to make offers for all 5 of SU2’s and SU3’s demanded units. Thus, the only 
potential variability in Nash equilibria for this scenario is in the prices of the offers from 
PU1 and PU2. The simplest equilibrium is the one in which all offers to SU2 and SU3 are 
made at the low price. For any given unit offered to SU2 or SU3, the PU’s expected payoff 

is 
ଵ

ଶ
𝑉௅. If either PU were to deviate to a high price offer, their offer would be rejected with 

certainty, so neither PU has incentive to deviate. If 𝑉௅ ൐
ଵ

ଶ
𝑞𝑉ு, then this is the only pure-

strategy Nash equilibrium. If 𝑉௅ ൑
ଵ

ଶ
𝑞𝑉ு, then in addition to the above equilibrium, there 

are 31 additional pure-strategy Nash equilibria in which anywhere from 1 to 5 of the offers 
by PU1 and PU2 to SU2 and SU3 are at the high price, the rest are at the low price, and offers 
by PU1 and PU2 to a given SU for a given time slot are of the same price. 

Now looking at the scenario on the left, it is no longer the case that PU1 can make offers 
for all demanded time slots they are linked with. Thus, possible equilibrium strategies for 
PU1 vary not only in the prices of PU1’s offers, but also in the number of offers he makes 
to SU2 and SU3. In any Nash equilibrium however, PU1 still offers two units to SU1 at the 
high price. Note that PU2 still has enough units available to make offers for all 5 of SU2’s 
and SU3’s demanded units. 

If 𝑉௅ ൑
ଵ

ଶ
𝑞𝑉ு, then in any pure-strategy Nash equilibrium, all units are offered at the high 

price. This yields 3 pure-strategy Nash equilibria in which PU1 offers two units to SU1 at 
𝑉ு, and two additional units at 𝑉ு either both to SU2, both to SU3, or one to each of them. 
PU2 offers two units to SU2 and three units to SU3 all at 𝑉ு. 
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If 𝑉௅ ൐
ଵ

ଶ
𝑞𝑉ு, there are no pure-strategy Nash equilibria. 

This example outlines various Nash equilibria that depend on the expected benefit of 
making high price offers. What we find is that sellers may have an incentive to offer high 
prices to buyers with multiple links and that competitive prices will prevail when both 

𝑉௅ ൐
ଵ

ଶ
𝑞𝑉ு and each seller can meet their entire market demand. 

Remarks on Posted Offers 

First, we develop a model where there is complete information between sellers. We find 
that it is possible for a secondary user to face two different prices in equilibrium. We also 
find that SUs who are linked to just one PU have a priority over those who have multiple 
trade links. Such SUs will be sold to first and receive a majority of the available units, but 
will be offered a high price due to the lack of competition. This result is consistent with 
other research that uses simulations to show that more spectrum channels are offered to 
SUs who have access to only one PU (Zhang and Zhou, 2014). 

The implication of this model is that PUs and SUs trading on a small network face 
equilibrium prices that are dependent on the exogenous structure of the network. Thus, 
location is important in models of spectrum sharing as a “bad” location could adversely 
affect buyers who face no competition as well as those who are in a “good” location but 
have a high demand. The reality that certain frictions in a small network, in this case 
location friction, as well as the inability to negotiate prices, puts buyers at a disadvantage 
in trading. 

Experiment 

The purpose of this section is to take this model to the laboratory to observe price-setting 
behavior in two exogenously imposed networks. First, we test whether sellers with little or 
no competition in the network set high prices. Second, we test whether sellers in 
competition offer high prices to buyers with multiple links despite network competition. 
Third, we test the effect of buyer valuation on a seller’s willingness to charge high prices. 
Fourth, we observe convergence toward equilibrium behavior and suggest that the 
complexity of a network can slow the learning process and lead to more nuanced results 
about which price-setting strategies are favored over others. 

Networks in the Laboratory: Relevant Literature 

Observing behavior in networks is fundamental to understanding many decentralized 
markets. As a result, experiments involving networks have become increasingly useful in 
testing theoretical predictions of behavior in markets, including how networks are formed 
(Rong and Houser, 2015; Falk and Kosfeld, 2012), efficiency in networks (Cassar et al., 
2012), and cooperation and learning in small networks (Kirchkamp and Nagel, 2006). See 
Kosfeld (2004) and Choi, Gallo, and Kariv (2015) for recent surveys on network games in 
the laboratory. 

Charness et al. (2007) examine trading outcomes in a bipartite network of buyers and sellers 
in an experimental setting, testing the theoretical predictions of Corominas-Bosch (2004) 
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which state that surplus depends on the structure of the network. We also use a variation of 
bipartite networks that are simple in structure. They find that a buyer and seller linked only 
to one another will split the surplus almost evenly after a period of bargaining. While our 
focus is not on bargaining, since buyers simply accept or reject a posted offer, their work 
is suggestive that we might see a division of surplus that favors sellers with single and 
multiple links to buyers due to lack in bargaining power of buyers. 

Like these, our experiment focuses on optimal pricing strategies in bipartite networks 
where trade is limited by the architecture of the network itself. Our experimental methods 
are most closely related to that of Gale and Kariv (2009), who also use posted prices in 
networks, except we do not concentrate on intermediary buyers and sellers but rather on 
buyers and sellers in a secondary market. Although we abstract away from intermediary 
paths, primary users in our application are, in a sense, intermediary sellers, and buyers in 
the network are final destination buyers. This is because primary users receive licensing 
rights from the Federal Communications Commission through an auction. A second 
notable difference is that our trading mechanism allows sellers to make a take-it-or-leave-
it offer to buyers, unlike Gale and Kariv, who let buyers make simultaneous bids. This 
subtle difference puts the focus on seller behavior rather than buyer strategies, and gives a 
better insight into competition among sellers in a small network that is more fitting to the 
application of spectrum trading. 

In a similar study, Choi, Galeotti, and Goyal (2015) test the effects of market power in an 
experimental setting, where both the paths between intermediary traders and node 
criticality(3) of traders influence the amount of surplus extracted by agents in the network. 
Their work focuses on posted prices as well and provides persuading evidence that an 
individual’s position in a network is crucial to their market power. Similarly, we argue that 
one’s position can increase trading power, namely of sellers with connections to buyers 
with a very limited number of connections. Judd and Kearns (2008) find that players benefit 
from having more connections. They implement a variety of large bipartite networks in 
their experiment and allow players to trade two fully divisible goods with each other, and 
notice that trading prices vary across network treatments. Though our mechanism of trade 
is different from these, we too look for asymmetries in benefits to players that depend on 
position in the network. 

Rosenkranz and Weitzel (2012) find that network structure plays a key role in determining 
investment in a public good and that individual contributions to the public good are 
decreasing in degree (or size of the network). Interestingly, they also find that individuals 
have a difficult time coordinating behavior in regular networks, where each individual is 
connected to the same number of other individuals, as opposed to irregular networks where 
individuals have a varying number of connections. Of the two networks we impose on 
players in our experiment, we might expect to find similar results in which, not the 
regularity in our case, but the complexity of the network influences individuals’ abilities to 
reach a stable equilibrium. 

The theory of networks is a large and growing literature, much of which focuses on the 
endogenous formation of links and network stability (Bala and Goyal, 2000; Watts, 2003; 
Jackson and Watts, 2002; Kranton and Minehart, 2003; see Jackson (2005) for a complete 



Posted offers in exogenous networks: A theoretical application and experimental results  29 
 

 

survey). Upon these, network experiments have become a natural step in trying to 
understand market behavior that would otherwise be difficult to observe in uncontrolled 
settings. Our work contributes to network games by allowing us to explore treatment effects 
across two bipartite networks characterized by varying degree distributions. 

Experimental Procedures 

In this experiment, we test price-setting predictions in a small exogenous network of buyers 
and sellers. Given a particular network structure, we allow sellers to make take-it-or-leave-
it offers to buyers to whom they are linked. Each seller is endowed with 𝑆 units, while each 
buyer demands 𝐷 units which is public information. Since buyers in our model follow a 
simple decision-rule in which they only accept an offer at a reservation price of 𝑝 ൑ 𝑉௜, 
where 𝑉௜ is the lowest possible valuation for the traded good, we let there be a computer-
generated response for each buyer in the network. This allows us to focus on the price-
setting strategies of sellers to find out whether their actions are consistent with profit-
maximizing behavior. 

Experimental Design and Procedures 

We use the experimental software z-Tree developed by Fischbacher (2007) to conduct our 
network experiments. A total of 50 undergraduate students from various academic faculties 
at Southern Illinois University were recruited.(4) 

At the beginning of each session, subjects are given an instruction packet to read privately 
which is also read aloud by the experimenter. Subjects are given instructions on which 
decisions they can make during the experiment and told that they will receive earnings 
based on their actions during the game. A sample of these instructions can be found in the 
Appendix. During the instruction phase, students are invited to ask questions to clarify any 
misunderstandings they might have. At the end of the session, participants are asked to fill 
out a short questionnaire, and are then paid privately by the experimenter. The purpose of 
the questionnaire is to collect information about the participants that may influence results. 
For example, we ask participants to rate (on a scale from 1 to 10) their desire to take risks(5) 
and their level of competitiveness. We also ask about gender, age, intended major, and year 
of undergraduate study. Payouts to the subjects include a $10 participation fee, plus 
subsequent earnings that depend on the decisions made during the game.(6) Each session 
lasts approximately 90 minutes. 

The experiment consists of each participant completing one session in which they play a 
total of 30 periods. In all periods, players face essentially the same game, with only their 
position changing. At the beginning of the session, players are randomly matched to form 
groups of two to replicate the network structures in Figure 3 below, where the two players 
act as competing sellers in a small fixed network. All paired players within a session face 
the same network and information. In total, we have four sessions where we vary the 
network structure across sessions to examine the role of network effects on individual 
behavior. Half the sessions face network (a) and half face network (b). 

In addition to varying link structure across the four sessions, we assign a total of two 
treatments by changing the prices sellers can set. The treatments are designed to capture 
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differences in price offers that are driven by the variation in buyer valuation. In other words, 
a large difference in valuation of buyers may result in more frequent high price offers. 
Across two of the four randomly selected sessions, players face the network structure 
shown in (a) depicted in Figure 3, while the other two sessions face the structure in (b). We 
randomly assign a treatment (i) or (ii) to each session such that we have half of the sessions 
facing a large price gap and the other half facing a low price gap. Following Example 1 
from earlier, notice that a pure-strategy Nash equilibrium in treatment (ii) is for sellers to 

make high price offers across all links (since we have imposed 𝑉௅ ൑
ଵ

ଶ
𝑞𝑉ு). In network a, 

treatment (i), there is no pure-strategy Nash and in network b, treatment (i), seller 2 will 
offer 2 units to Buyer D at the low price and the remaining unit at the low price given that 

seller 1 offers him 2 units at the low price (since 𝑉௅ ൐
ଵ

ଶ
𝑞𝑉ு). 

Figure 3. Partially linked network structures imposed on players 

 
Table 1.  Four experimental treatments imposed on four sessions 

 Networks 
Treatments (a) (b) 
(i) Session 1, 

14 subjects 
Session 3, 
16 subjects 

(ii) Session 2, 
10 subjects 

Session 4, 
10 subjects 

(i) = Small price gap, 𝑝௅ ൌ 1,  𝑝ு ൌ 3 and (ii) = Large price gap, 𝑝௅ ൌ 1, 𝑝ு ൌ 6 
(a), (b) refer to the two network structures shown in Figure 3 
We recruited a total of 50 subjects and record their offer choices over 30 rounds, giving a total of 1500 observations. 

To start, players are randomly matched with an unknown partner, with whom they stay 
matched throughout the session. Then, each one is assigned to a node on a given network 
which is displayed to them on their computer screen.(7) Note that players in the session 
cannot see the screens of those sitting nearby and are asked not to communicate with one 
another. The type of all players in the network is a seller (top row of the network), but their 
position as a seller switches randomly each period, while the network architecture remains 
the same throughout the session.  

Sellers are endowed with 𝑆 units of the good. Sellers are also told the likelihood that the 

computer-generated buyer (CGB) will accept a high price offer, which is 
ଵ

ଶ
. CGBs (bottom 

(a)       (b)

Seller 1       Seller 2      Seller 1                     Seller 2 
4 units    5 units      4 units       5 units 

Buyer C                   Buyer D                 Buyer E     Buyer C                  Buyer D      Buyer E 
2 units                  3 units    2 units    2 units                     3 units                     2 units 
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row of the network) are labeled with how many units of the good they demand. Sellers are 
asked to make take-it-or-leave-it offers to buyers with whom they are linked. They do so 
by first selecting one or more buyers with whom they would like to trade with, and then 
enter a number next to each buyer representing how many units they would like to offer 
him(8), as well as an ask price of either 𝑝ு or 𝑝௅. We have that 𝑝௅ ൌ 1 in all cases, but  
𝑝ு ൌ 3 𝑜𝑟 6 depending on the treatment group. Once both sellers submit their offers, the 
results are displayed to the players, indicating their total sales for the round. After their 
payoffs are displayed, the next period begins and the player is assigned a new position. The 
game repeats. 

Figure 4. Example of screen display for network (a) and treatment (i) 

 

 

 

 

 

 

 

 

 

 

 

Data and Hypotheses 

The data collected tells us the specific offers that each of the 50 sellers made over the course 
of 30 rounds. From this, we document each individual’s offers to get an indication of how 
players’ strategies evolve throughout the experiment. We expect that through the first few 
rounds, players will be in a state of learning, and will possibly switch strategies often. Over 
the course of time, we should expect players to converge toward playing an optimal 
strategy. Note that there are multiple possible equilibrium strategies within network play, 
but despite differences in actual offers, we can easily observe which ones are consistent 
with our theoretical predictions. While in theory the problem of multiple equilibria can 
pose problems, an experimental approach to testing equilibrium predictions is one way of 
observing which equilibria are more likely to occur (Charness et al., 2014) and, in our case, 
we can observe which price offers occur most frequently. 

Below, we summarize group characteristics across treatments. We find that we have little 
variation between groups in subject characteristics (with the exception of gender), 
suggesting that our treatment groups are properly randomized.  
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Table 2. Subject characteristics, by treatment group 

 
Network (a), Low 
price gap 

Network (a), High 
price gap 

Network (b), Low 
price gap 

Network (b), High 
price gap 

Average time in decision stage 27.24 25.13 17.97 19.47 
(in seconds) (29.74) (23.54) (19.45) (17.74) 
Observations 420 300 480 300 
Average total sales 13.74 23.5 12.79 15.05 
(per person) a   (1.71)       (4.39)       (2.33)        (3.89) 
Average age 20.64 19.6 20.25 21.40  

  (3.18)       (0.70)       (2.08)        (5.60) 
Average years in 2.43 2.10 2.19 2.90 
college b   (1.16)       (0.57)       (0.91)        (0.74) 
% Females 57.1 30.0 37.5 70.0 
Total subjects 14 10 16 10 
Standard deviations are reported in parentheses. Average time spent in the decision stage across subjects is the average over all 30 
rounds. Though not reported, there is little variation in self-reported risk-seeking and competitive behavior between treatment groups. 
a Total sales in any round for a participant is calculated as the total number of units they sold, multiplied by the selling price, and then 
scaled by 0.15 (0.10) in a low (high) price gap treatment, respectively. Recall that actual payouts are higher, as subjects receive a $10 
participation fee. 
b Subjects report their standing in college as such; 1 = Freshman, 2 = Sophomore, 3 = Junior, 4 = Senior. 

A notable feature of our design is that we manipulate two key variables at two levels, 
allowing for a between-group comparison of treatments. These are network architecture 
and price levels. See Table 1 in the previous section for a design layout. For one, we test 
for network effects between groups facing the same network. We expect that a change in 
link structure may influence the degree to which players are willing to take risks and offer 
high prices. And second, we compare the price offers between groups facing the same price 
gap to test whether a higher price gap attracts players to charge the higher price more often. 
With these in mind, we state the following hypotheses. Some are directly related to 
theoretical predictions outlined in the first section of the paper, while others are predictions 
based on how we anticipate behavior to differ given the nature of the experiment.  

H1. Players in any treatment group will offer single-linked buyers more units at a high 
price on average compared to commonly-linked buyers. (see Proposition 1) 

H2. Players in any treatment group will offer the maximum number of units possible to 
buyers with a single link at a high price in equilibrium. (see Proposition 2) 

Recall the model presented earlier where we assume a high price offer is superior to a low 
price offer when there is no competition. Thus, sellers will exploit single links to buyers by 
charging a monopoly price (H1). In all treatment groups and networks, we should observe 
sellers making consistent high price offers to such buyers. If we are to strictly count the 
number of times that sellers make strict high price offers to single-linked buyers, these 
statistics are quite low. For instance, players assigned as seller 1 only offer buyer C strict 
high prices 42 percent of the time across all networks, while buyer E is offered strict high 
prices 38 percent of the time in network (b). Despite the seemingly low frequency of this 
offer type, we compare the frequency of offer types among buyers in respective treatment 
groups to show that single-linked are offered more high priced units than commonly linked 
buyers. See the results section for a decomposed representation of offers. 
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H3. The number of units offered to buyers with common links at a high price will differ 
depending on the network structure, regardless of the price gap. 

H4. Players in a group facing treatment (ii), where the price gap is high, will offer more 
units at the high price on average to all types of buyers, regardless of network structure. 

In Hypothesis 3, we predict that the degree of competition, represented in the link pattern, 
will influence a seller’s decision to make high price offers. We find that players in network 
(b) – a lower competition network – offer more high priced units over common links than 
players in a high competition network. A possible explanation for this outcome is that lower 
overall competition in a network drives up prices, but as we explain later, it is more likely 
a result of a player’s confidence that they will make money by exploiting single-links and 
so they may be more willing to take risks over common links by setting high prices. 

In Hypothesis 4, we propose that an increased price gap will influence buyers to offer more 
high prices on average. Theoretically, sellers should offer the high price to a buyer when 
there is no competition (when there is a single link to that buyer), since the expected return 
is higher in both of the treatment groups. Sellers should also offer units at the high price to 
the extent that another seller cannot compete in prices over all of the units that a buyer 
demands. However, there is likely to be a difference in behavior in the group that has a 
higher price gap, since this group may be willing to offer high prices in earlier rounds and 
may be more likely to take additional risk by offering units at a high price even when they 
know they could be undercut by the other seller. Evidence in our data to this effect will 
suggest high price offers are increasing in price gap. 

Experiment Results 

To formally test our hypotheses, we consider between group comparisons of high price 
offers, as well as estimate the likelihood that players make high price offers to buyers with 
whom they are linked, controlling for various subject-specific characteristics. Table 3 
summarizes high price offers between treatment groups by reporting the average number 
of units offered at a high price to buyers C, D, and E across subjects within groups. For 
example, in network (a) with a low price gap, buyer C is offered on average 1.09 units at a 
high price across all 30 periods by a total of 14 subjects. (Recall that of the 14 subjects, 
only 7 can sell to buyer C in any one period, thus limiting the number of observations 
to 210). 

We see that in all treatment groups but one, buyer C is offered more units on average at a 
high price than their respective commonly linked buyers, a phenomenon that is also evident 
when we plot offers across rounds. Likewise, in network (b) with a low price gap, the 
single-linked buyer E is offered more units at a high price than buyer D who is commonly 
linked. 
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Table 3. Average number of units offered to buyers at a high price 

  Buyer C Buyer D Buyer E 
Network (a), Low price gap 1.09 0.407 0.236 
  (0.056) (0.036) (0.024) 
  210 420 420 
Network (a), High price gap 0.893 0.490 0.410 
  (0.064) (0.042) (0.036) 
  150 300 300 
Network (b), Low price gap 0.95 0.577 0.796 
  (0.054) (0.041) (0.050) 
  240 480 240 
Network (b), High price gap 1.03 1.17 1.04 
  (0.066) (0.061) (0.065) 
  150 300 150 
Standard errors in parentheses and number of observations reported below. Means represent the average number of units offered to 
respective buyers at a high price in a given treatment group. Recall that in network (a), buyer C is a single-linked buyer. In network (b), 
buyers C and E are both single-linked buyers. 

Below, we track the behavior of subjects in each treatment group across all 30 periods to 
summarize how price offers differ between groups and among buyers within groups. This 
serves to further decompose the means reported in Table 3. For simplicity, we focus on 
high price offers. In figures 5 – 8 below, the dependent variable represents the average 
number of units across subjects that were offered to a given buyer at a high price. For 
example, in network (a), treatment (i), we have a total of 14 subjects, who on average 
offered buyer C a total of 1.42 units at a high price in period 1. From these graphs, it is 
plain to see that in all but one treatment group, buyer C (who is a single-linked buyer in 
each network) is offered more high priced units on average. We also note that the 
movement of subjects within groups across the 30 periods is quite volatile and that players 
do not appear to converge toward a specific strategy, but rather switch strategies often from 
round to round. Perhaps increasing the number of periods would result in more obvious 
patterns and convergence among subjects, but since we summarize averages across 
subjects, the depictions are not individually descriptive of subject-specific trends over time. 
In other words, individual players may converge toward specific strategies which are not 
evident in the graphs. 

Figure 5. Average number of units offered to buyers at a high price, network (a), low price gap 
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Figure 6. Average number of units offered to buyers at a high price, network (a), high price gap 

 
Figure 7. Average number of units offered to buyers at a high price, network (b), low price gap 

 
Figure 8. Average number of units offered to buyers at a high price, network (b), high price gap 
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By comparing means between buyers in each treatment group, we find that H1 is generally 
supported by our data – that is, single-linked buyers are given high price offers more 
frequently than buyers with common links. Table 4 reports two-sample test statistics to 
compare offers given to single-linked and commonly-linked buyers. Specifically, the test 
statistics provide evidence that the average number of units offered to single-linked buyers 
is statistically greater than the average number offered to buyers with common links. In 
almost all treatment groups, we find that the means are significantly different and conclude 
that single-linked buyers are offered more units on average at a high price. In network (a), 
large test statistics lead us to reject the null hypothesis that buyer C is offered the same 
number of units at high price on average as commonly linked buyers D and E. Similarly, 
in network (b) with a low price gap, large test statistics lead us to reject the null hypothesis 
that single-linked buyers C and E are offered the same number of units at a high price as 
the commonly linked buyer D. Together, these comparisons suggest that our data is 
supportive of H1. 

Table 4. Single-linked buyers face high prices more often than buyers with common links (H1) 
Network (a), Low price gap 
Buyer C Buyer D t-stat Buyer E t-stat 
1.09 0.407 10.252*** 0.236 13.999*** 
(0.056) (0.036)  (0.024)  
210 420   420  

Network (a), High price gap 
Buyer C Buyer D t-stat Buyer E t-stat 
0.893 0.49 5.290*** 0.41 6.614*** 
(0.064) (0.042)  (0.036)  

150 300  300  

Network (b), Low price gap 
Buyer C Buyer D t-stat Buyer E t-stat 
0.950 0.577 5.528*** 0.796 3.378*** 
(0.054) (0.041)  (0.050)  

240 480  240  

Network (b), High price gap 
Buyer C Buyer D t-stat Buyer E t-stat 
1.03 1.17 -1.512 1.04 -1.45 
(0.066) (0.061)  (0.065)  

150 300  150  

Notes: In each panel, we report the average number of units offered to single-linked buyers at a high price to the average number 
offered to commonly-linked buyers. Recall that in network (b), both buyer C and E are single-linked buyers. Standard errors are in 
parentheses, and number of observations are also given. Reported test statistics are two-sample t-tests (with unequal variances) for 
comparing means. In all but one treatment group, we find that single-linked buyers are offered more units at a high price on average.  

We find that, although single-linked buyers are offered more high price units on average, 
it is not necessarily the case that they face high prices across their full demand. Recall that 
in each network, single-linked buyers demand two units each. We observe the frequency at 
which single-linked buyers are offered two units at a high price, as well as the frequency 
that they are in fact offered the full two units they demand. Refer to Table 5. As expected, 
we see that sellers in all treatment groups exploit the single-link by frequently offering 
these buyers the full number of units they demand—a minimum of 68.67% of the time in 
network (b) with a high price gap and as frequently as 92.38% of the time in network (a) 
with a low price gap. However, we notice that it is not so evident that sellers prefer to offer 
both units to single-linked buyers at the high price. In fact, it is apparent in our data that 
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players just as frequently split their offer (1 unit at a high price and 1 at a low). Despite 
players’ tendencies to mix up their strategies, we can be confident that they exploit the 
single-link in every environment by always offering the maximum number of units to such 
buyers. 

Table 5. Frequency that single-linked buyers are offered strictly high prices and their full demand 
Network (a), Low price gap Network (a), High price gap 
 Seller 1    Seller 1  
Two units at 0.3762   Two units at 0.2533  
high price (0.486)   high price (0.436)  
Full demand 0.9238   Full demand 0.8133  
 (0.266)    (0.391)  
Obs. 210   Obs. 150  
Network (b), Low price gap Network (b), High price gap 
 Seller 1 Seller 2   Seller 1 Seller 2 
Two units at 0.3208 0.2208  Two units at 0.3467 0.3400 
high price (0.468) (0.416)  high price (0.478) (0.475) 
Full demand 0.9000 0.7000  Full demand 0.6867 0.6933 
 (0.461) (0.461)   (0.465) (0.463) 
Obs. 240 240  Obs. 150 150 
Notes: Reported are the frequencies of which single-linked buyers are offered two units at a high price by a seller. We also report the 
frequency at which these buyers are offered their full demand (two units). Standard deviations are in parentheses. 

We are also interested in testing for differences in means between networks to see whether 
high price offers to buyers with common links are dependent on network structure (H3). In 
Table 6 we compare the average number of units offered to buyer D (who is commonly 
linked in all networks) at a high price across networks for both price treatments. For 
example, buyer D is offered an average of 0.407 units at a high price in network (a) with a 
low price gap, which is statistically different than the 0.577 units he is offered in network 
(b) with a low price gap. The same is true in comparing networks (a) and (b) at a high price 
gap. Thus, our data suggests that commonly linked buyers receive more high price offers 
in network (b), supporting our hypothesis that network structure can play an important role 
in price determination. A likely explanation for this difference in our particular experiment 
is that, in network (b), seller 2 holds a monopoly link over buyer E. So, seller 2 can be 
confident that he will make profits over this link. Thus, seller 2 may be more likely to offer 
risky high prices to buyer D who is commonly linked, since any risk of doing so is offset 
by the fact that he has a stream of certain income coming from buyer E. 

We also test for price gap effects (H4) to see whether high price offers are increasing in 
price gap for all buyers. These results are reported in Table 7. Here, we compare the average 
number of units offered to buyers at a high price between price treatments, fixing the 
network. In most cases, we find that high price offers to buyers D and E are significantly 
different (and increasing) in price gap in both types of networks. Buyer C is offered more 
units at a high price in network (b) with a high price gap treatment – but not significantly 
so – and he is offered less units at a high price in network (a) with a high price gap 
treatment. This could partly be explained by the fact that subjects facing network (a) in the 
low price gap group offered buyer C his full demand much more frequently (92% of the 
time) than subjects in the high price gap group who only did so 60% of the time. It is 
perhaps the case that if subjects in the high price gap group were to make full offers to 
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buyer C, the result could be reversed. Later, we find that controlling for subject 
characteristics sheds no further light on this result. 

These network and price gap effects are summarized in the tables below, where large test 
statistics represent a statistical difference in the frequency of offers given to buyers when 
we fix either the price treatment or the network treatment.(9) In Table 6, the test statistics 
confirm that buyer D was offered more units at a high price on average in network (b) than 
in network (a), in both a low and high price gap treatment. In Table 7, the test statistics 
report that in almost all cases, buyers are offered more units at the high price under a high 
price gap treatment. The exception is network (a), where buyer C was offered 0.197 less 
units at a high price on average in the higher price gap treatment. 

Table 6. High price offers to commonly-linked buyers differ among network structure (H3) 
Low price gap High price gap 
Network (a) Network (b) t-stat Network (a) Network (b) t-stat 
0.407 0.577 -1.917* 0.49 1.17 -9.151*** 
(0.036) (0.041)  (0.042) (0.061)  
420 480  300 300  
Notes: Buyer D is the only commonly-linked buyer across all networks. We report the average number of units offered to buyer D at a 
high price in each treatment group and compare across network to find that buyer D is offered significantly more high price units on 
average in network (b). Reported test statistics are two-sample t-tests (with unequal variances) for comparing means. Standard errors 
are in parentheses, and observations are also given. 

Table 7. Buyers are offered more high price units in a high price gap treatment (H4) 
Network (a) 
Buyer C Buyer D Buyer E 
Low  High t-stat Low  High t-stat Low High t-stat 
1.09 0.893 a 2.329*** 0.407 0.49 -1.491 0.236 0.41 -3.998*** 
(0.06) (0.06)  (0.04) (0.04)  (0.02) (0.04)  
210 150  420 300  420 300  
Network (b) 
Buyer C Buyer D Buyer E 
Low  High t-stat Low High t-stat Low High t-stat 
         
0.950 1.03 -0.975 0.577 1.17 -8.057*** 0.796 1.04 -2.958*** 
(0.05) (0.07)  (0.04) (0.06)  (0.05) (0.07)  
240 150  480 300  240 150  

Notes: For each buyer, we report the average number of units offered to him at a high price 
and compare across price treatments using two-sample mean comparison test statistics. 
Standard errors are in parentheses, and number of observations are also given. a Buyer C is 
offered 0.197 less units at a high price on average in the higher price gap treatment, which 
is inconsistent with our expectations. 

 

Conclusion 

Our experiment has aimed to show how price offers may differ in small fixed networks 
with asymmetric demand and supply. We find that buyers with single-links are often 
exploited and tend to face higher prices on average than buyers in better locations (that is, 
with multiple links to sellers). However, due to the offer structure, we find that buyers in 
good locations also face high prices frequently. These findings confirm predictions of our 
theoretical model of spectrum trading. With a total of 1500 observations across four 
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treatment groups we have identified how average price offers differ in networks and price 
treatments. Specifically, we find that network effects are present and that players in our 
smaller network offered more high priced units on average than in our larger network. Also, 
we find that players in a high price gap treatment offer more high-priced units in most 
cases. 

The main implications of our findings are that network architecture plays a key role in 
determining pricing outcomes and that our particular experiment design allows us to 
identify differences in price offers that occur as a result of varying buyer valuation. 

 
Notes 
 
(1) Financial support from the NSF under grant SES-1343380 is gratefully acknowledged. Special 

thanks to Alison Watts for guidance and support in conducting this research. 
(2) See Cramton (1997), Gandhi et al. (2007), Watts (2015), Zhou and Zheng (2009), and Zhou et al. 

(2008). 
(3) Node criticality refers to nodes, or vertices, on a graph type network that is located on a path from 

a source to a final destination. These nodes are critical in the sense that a traded good, for example, 
must pass through this node at some point along the path if it is to reach its final destination. 

(4) Traditionally, it is ideal to have roughly 100 participants in experimental studies. However, both 
the capacity of the computer lab and the constraint of funds to pay participants limits our 
recruiting ability. Despite these limitations, each of the 50 participants generate data over 30 
periods, giving a total of 1500 observations. 

(5) This is perhaps an over-simplified way to capture risk attitude. Commonly, experimental papers 
dealing heavily with risk and behavior use Zuckerman’s (1994) Sensation Seeking Scale V, a 
scale built on a series of 40 questions that aim to measure an individual’s inherent risk attitudes, 
independent of situational factors. Because of the exhaustive nature of such a scale and limited 
time, we opt for a simple method in hopes to gain at least some information about the attitudes of 
our subject pool. 

(6) Participants facing a low price gap treatment receive a payout of $10 ൅ 0.15 ∗ 𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑙𝑒𝑠, 
while participants in high price gap groups receive $10 ൅ 0.10 ∗ 𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑙𝑒𝑠. We scale Total 
Sales differently to balance earnings across groups, since players in high price gap groups will 
naturally earn more. 

(7) See Figure 4 for an example of the screen display. Entire screen displays for each session can be 
found in the Appendix. Keep in mind that players will only see screens that are specific to their 
randomly assigned position on the network to design an environment where sellers A and B enter 
two similar decision stages simultaneously. 

(8) Sellers choose who to trade with, how much, and the price of each unit; but they do not choose 
the order in which the units will be available to buyers. This aspect of the game is built into the 
CGB decision process, and players are instructed as to how CGBs make their purchasing 
decisions. 

(9) These results are robust to a logistic regression analysis, where we are able to control for subject-
specific characteristics such as risk, gender, and age.  
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Appendix 

A1. Sample Instructions 

Thank you for your participation in this research study. Your decisions and the decisions 
of others during this experiment, as well as an element of chance, will determine your 
monetary payout. You will be paid privately at the end of the session; funds have been 
provided through a research grant. To ensure the best payout, please pay careful attention 
to the instructions and make your decisions carefully. This session will take approximately 
90 minutes to complete.  

During this session, you will complete a total of 30 periods. At the beginning, you will be 
randomly matched with another person in the room, but you will not know who they are. 
You will stay paired throughout the experiment. Please do not look at others’ computer 
screens. 

In each period, the two of you will act as sellers and will be able to sell to buyers with 
whom you are connected to on a network (shown below). There are no buyers in the room—
all buyers are computer-generated. Here is an example: 

 

 

 

 

 

 
 In each period, you will be assigned a position as seller 1 or seller 2 (if you are seller 

1, then your matched partner is seller 2 and vice versa). 
 You may sell to a buyer if there is a line connecting you and the buyer. 
 The numbers represent how many units sellers have to sell and buyers want to buy 

(example: seller 1 has 4 units to sell, buyer D wants to buy 3 units). 

At the beginning of each period, carefully take note of your position on the network and 
the number of units next to each person. Your position will switch randomly throughout 
the session. 

You will be able to choose a Low price or a High price for each unit that you try to sell to 
a buyer, which will be shown to you on the screen. Some buyers are willing to pay the 
higher price for a unit, but others will only pay the lower price. You don’t know which 
buyers are which. For each buyer, there is a 50% chance that they would never buy at 
the higher price. Also, even if a buyer is willing to pay the higher price, if your partner 
offers him a unit at the lower price, he will buy the unit at the lower price. Each period, the 
willingness of a buyer to pay the higher price switches randomly. If a buyer is indifferent 
between two offers, and is willing to pay the price of either offer, then he randomly decides 
which offer to take. 

   Seller 1: 4 units 

 C: 2 units D: 3 units E: 2 units 

 Seller 2: 5 units Sellers 

 Buyers 
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At this time, you will choose how many units you will offer to each buyer and at which 
price. You may choose any combination of units/prices you wish. You will enter this 
information in boxes on the right side of the screen.  

Here is an example of what you might see: 
Low price = $X High price = $Y

Buyer C  
Buyer D  
Buyer E  

In each of the boxes, enter the number of units you would like to offer to each buyer at 
which price. In total, you cannot offer more units than what you have available to sell. 
When you are done, click Submit. 

When you and your partner have submitted your offers, your total sales during this period 
will be displayed. 

This completes one period. In total, you will complete 30 periods. Keep in mind that each 
period, your position on the network will change at random but you will be matched with 
the same partner each time, although you do not know who this person is. 

When all 30 periods have been completed, your payoff will be calculated as follows: 

𝑃𝑎𝑦𝑜𝑢𝑡 ൌ ሺ$10 𝑠ℎ𝑜𝑤 𝑢𝑝 𝑓𝑒𝑒ሻ ൅ ሺ𝑆𝑢𝑏𝑠𝑒𝑞𝑢𝑒𝑛𝑡 𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑠ሻ 

Subsequent earnings depend on your sales throughout the game, an element of chance, and 
your partner’s decisions. Sales in any one period are calculated as the number of units you 
are able to sell, multiplied by the price you sell them at.  

At the end, you will also be asked to answer a short questionnaire to complete the session. 
When you have done so, you will be paid privately by the experimenter. 

This completes the instructions. At this time, the instructions will be read out loud and you 
will have a chance to ask questions. 

Thank you for your participation in this study. If you would like to participate in further 
research studies within the Department of Economics, please provide your name and 
contact information on the sign-up sheet before you leave. 

 

A2. Screens displayed to a subject in network (a), given treatment (i) 

Note that the players enter one of two decision stages depending on their randomly assigned 
position, and they enter the stage simultaneously. 
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