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Abstract. This paper employs the evolutionary dynamics driven by the Moran process (a 
special birth-death process) to investigate endogenous cartel formation from the 
perspective of stochastic evolution of the underlying industry. A Prisoner’s Dilemma 
game is derived based on the Cournot competition between any two firms. Moreover, in a 
repeated setting, we consider the normal-form game between two well-known behavior 
modes: cooperative strategy tit-for-tat (TFT) and non- cooperative strategy always defect 
(ALLD). We then give the corresponding conditions under which full collusion and 
partial collusion are established, respectively, in stochastic evolutionary sense. Finally, 
both the threshold of discount factor and the threshold of industry concentration are 
endogenously determined in the model. 
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1. Introduction 
When regarding cartel formation, existing literatures (Compte et al., 2002; 
Vasconcelos, 2005; Escrihuela-Villar, 2009; and Bos and Harrington, 2010) 
usually assume that the collusive outcome is the joint profit maximum. As you 
can see, they endogenize cartel composition and cartel formation by using the 
classic methodology of rational individual choice. That is, in a repeated setting, 
collusion can be supported and sustained if the expected cost of cheating today is 
higher than the expected benefit in future, so that firms refrain from undercutting 
the collusive price. Nevertheless, it is easily seen that bounded rationality and 
uncertainty in reality indeed may make collusion difficult, particularly in a 
changing economic environment, because of increased complexity in formulating 
and monitoring any contract (Williamson, 1975; Levenstein and Suslow, 2006). 
So, what are the industry conditions which support stochastic evolutionary cartel 
formation? Are there any new problems or issues when we consider cartel 
formation in an evolutionary environment and also from the perspective of 
stochastic group evolution?(1) The objective of this article is to address these and 
related questions by endogenizing cartel formation in the context of an 
evolutionary game with an exogenous parameter measuring the extent of 
substitution between the products. 

The major results of the current exploration can be expressed as follows. First, the 
recognition that “entry” is one of the most important problems facing any cartel 
encourages us to employ birth-death processes to model such kind of phenomenon 
in reality, and in particular, the well-known (perturbed) Moran process is used in 
this study for the first time. Second, noting that “coordination” plays a key role in 
cartel success in a situation in which there are multiple equilibria, we thus derive a 
coordination game based upon the Prisoner’s Dilemma game between any two 
firms and also in a repeated setting, and thus the following analysis strictly 
surrounds the induced normal-form game. Third, the underlying evolutionary 
mechanism reveals that “cheating” can be an evolutionary stable strategy (ESS) in 
relatively weak conditions and therefore cartel formation is faced with much 
stronger challenge in the present industrial environment. Forth, the minimum 
discount factor for sustaining full collusion is obtained and we further derive the 
minimum number of the firms (or the threshold of industry concentration) that 
supports full collusion for any given discount factor. Finally, we have derived the 
minimum discount factor such that partial collusion is established when the 
number of the firms in the underlying industry is sufficiently large and the 
mutations of the evolutionary dynamics are sufficiently small. 

Now, we discuss some related literatures. Selten (1973) has theoretically 
considered the process of forming a cartel in a simultaneous-moves game in the 
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sense of Cournot-competition. The main finding of Selten (1973) is that only the 
industries composed of less than six firms stand a chance of having a cartel. To 
extend the model of Selten (1973), Prokop (1999) constructs a sequential- and 
simultaneous-moves game to investigate the process of cartel formation. In the 
model with sequential moves Prokop (1999) finds that there is a possibility for 
creation of a dominant cartel, whereas the simultaneous-moves game shows that it 
might be close to impossible to form a stable cartel even though one can prove the 
theoretical existence of such a cartel. Recently, there is a pair of articles which 
endogenize cartel composition and cartel membership in the context of an 
infinitely repeated game. For example, Escrihuela-Villar (2009) examines an 
infinitely repeated quantity setting with identical firms and homogeneous goods 
and the main result reveals that firms only have an incentive to form the smallest 
sustainable cartel. In addition to that, Bos and Harrington (2010)’s model is the 
first to endogenize the composition of a cartel in the context of an infinitely 
repeated game with heterogeneous firms. And their analysis demonstrates that 
there exists a stable cartel involving the largest firms when firms are sufficiently 
patient, while a firm with sufficiently small capacity is not a member of any stable 
cartel.  

When compared with existing work, there are some differences which need be 
specifically pointed out. First, the most obvious difference is that we endogenize 
cartel formation from the viewpoint of stochastic group evolution rather than the 
firm’s rational individual choice even though we generally can understand the 
evolutionary outcome by applying the well-known as if hypothesis from the 
perspective of ex post. Second, in spite of the firms are assumed to be in repeated 
interactions, the infinitely repeated game just provides us with a normal-form 
game and our major analysis follows from the underlying evolutionary dynamics 
deduced by the normal-form game. That is, we consider a stochastic and dynamic 
environment instead of a static and deterministic framework. Third, the collusive 
outcome in the paper is not the joint profit maximum as in Escrihuela-Villar 
(2008) and among others but a long-run equilibrium selected by the underlying 
evolutionary mechanism. Forth, asymmetry between the firms characterized by 
the parameter measuring the extent of substitution between the products does not 
directly affect the process of cartel formation in the present evolutionary model, 
and it only indirectly determines the minimum discount factor and the minimum 
number of firms which support full collusion in the industry under consideration. 
Last but not least, it is particularly worth emphasizing that the endogenous partial 
collusion is characterized in the sense of limiting probability distribution and also 
in asymptotic sense in the present stochastic evolutionary game. Accordingly, 
these differences may also be regarded as the innovations of the current 
investigation. 
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The article is organized as follows. In section 2, the basic model is described and 
a normal-form game in a repeated setting is established. In section 3, we first 
introduce the necessary mathematical background, i.e., the Moran process and the 
perturbed Moran process, and two key theorems are derived, based upon which 
we then obtain the main results of the present exploration. Section 4 closes this 
study with some concluding remarks. Major mathematical derivations appear in 
Appendix A. 

 

2. The induced normal-form games 
In the present section, it is assumed that there are two firms in the market. We 
consider the following inverse demand functions, 

( )i i jp q qα β θ= − + , i j≠ , , 1, 2i j = .                                    (1) 

for , 0α β >  and 0 1θ≤ ≤ . The parameter θ  measures the extent of substitution 
between the products i  and j . In particular, 0θ =  implies that products i  and j  
are completely heterogeneous products while 1θ =  showing us that products i  
and j  are homogeneous, i.e., products i  and j  will completely substitute each 
other when 1θ = . Noting that the parameter θ  will be the unique parameter that 
characterizes the difference between products i  and j , it will play a crucial role 
in the following analysis. 

Consider a single-period game. Suppose that the firms play non-cooperatively, 
each firm solves the following optimization problem by making use of (1), 

max ( , ) ( )
i

i i j i i j iq
q q q q q cqπ α β θ = − + −   ( i j≠ , , 1, 2i j = ).                 (2) 

in which 0c >  denotes the fixed marginal cost. From the first-order conditions of 
the maximization problem, it can be concluded that the reaction functions are 
given by, 

( )
2

j
i j

c q
q q

α βθ
β

− −
=  ( i j≠ , , 1, 2i j = ).                                  (3) 

Now, by symmetry and some necessary algebra, we get that in the unique 
Cournot-Nash equilibrium of the one short game, firms’ outputs and individual 
profits are written as follows, 

1 2 (2 )
cq q α

β θ
∗ ∗ −
= =

+
, 

2

1 1 2 2 1 2 2

( )( , ) ( , )
(2 )

Cournot Cournot cq q q q απ π
β θ

∗ ∗ ∗ ∗ −
= =

+
.          (4) 
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Suppose instead that the firms are encouraged to maximize their joint profit in the 
one-short game, thus their equilibrium outputs result from the following 
optimization problem, 

[ ]{ } [ ]{ }
1 2

2

1 2 1 1 2 1 2 2 1 2{ , } 1
max ( , ) ( ) ( )iq q i

q q q q q cq q q q cqπ α β θ α β θ
=

= − + − + − + −∑ .  (5) 

From the first-order conditions of the previous maximization problem, and by 
symmetry between the two firms, it is easily shown that the cooperative outputs 
and cooperative-equilibrium profits are given as, 

1 2ˆ ˆ
2 (1 )

cq q α
β θ

−
= =

+
, 

2

1 1 2 2 1 2
( )ˆ ˆ ˆ ˆ( , ) ( , )

4 (1 )
Cooperate Cooperate cq q q q απ π

β θ
−

= =
+

.                (6) 

We without loss of generality assume that firm 1 is considering to deviate when 
the two firms are supposed to set outputs in (6), then making use of firm 1’s 
reaction function in (3), firm 1’s optimal deviation output is obtained, 

1 2
(2 )( )ˆ( )

4 (1 )
cq q θ α

β θ
∗ + −

=
+

.                                                    (7) 

So, the deviation profit of firm 1 and the corresponding cooperative profit of firm 
2 are respectively given as, 

2

1 1 2 2
1 (2 )( )ˆ ˆ( ( ), )

4(1 )
Defect cq q q θ απ

β θ
∗  + −

=  + 
.                                      (8) 

2 2

2 1 2 2 2

( ) (2 2 )ˆ ˆ( ( ), )
8 (1 )

Cooperate cq q q α θ θπ
β θ

∗ − + −
=

+
.                                   (9) 

Up to the present step, we have derived all the possible profits of the two firms by 
applying the symmetry between the firms. Accordingly, one can establish the 
payoff matrix of the one-short game by using (4), (6), (8) and (9) as follows, 

 Cooperate               Defect 

Cooperate 

 

Defect 

2( )
4 (1 )

cα
β θ
−
+

       
2 2

2

( ) (2 2 )
8 (1 )
cα θ θ
β θ

− + −
+

 

2
1 (2 )( )

4(1 )
cθ α

β θ
 + −
 + 

       
2

2

( )
(2 )

cα
β θ

−
+

 

Figure 1. One-Short Game 
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Now, based upon the one-short normal-form game given in Figure 1, we obtain 
the following result, 

Lemma 1. i) If 0θ = , i.e., the products of the two firms are completely 
heterogeneous, then Figure 1 shows us a Neutral game with the entries having the 
same value of 2( ) 4cα β− ; 

ii) If 2 2 2[0,1] { | 8(1 ) (2 ) (2 2 )}θ θ θ θ θ θ∈ ∩ + > + + − ≠ ∅ , then  Figure 1  shows  a 
Prisoners’ Dilemma game with 

1 1 2 2 1 1 2 1 1 2ˆ ˆ ˆ ˆ( ( ), ) ( , ) ( , )Defect Cooperate Cournotq q q q q q qπ π π∗ ∗ ∗> > >   1 1 2 1ˆ ˆ( , ( ))Cooperate q q qπ ∗  for firm 
1, and so is firm 2. 

Proof. Inserting 0θ =  into Figure 1 produces the required result in i). It follows 
from Figure 1 that, 

2 2 2
1 1 2 1 1 2 1ˆ ˆ( , ) ( , ( )) 8(1 ) (2 ) (2 2 )Cournot Cooperateq q q q qπ π θ θ θ θ∗ ∗ ∗> ⇔ + > + + −  

Indeed, we have 2 2 20 [0,1] { | 8(1 ) (2 ) (2 2 )}θ θ θ θ θ∉ ∩ + > + + − ≠ ∅ , for example, 
one may check it with 1θ = . Noting that, 

22
2( ) 1 (2 )( ) 0

4 (1 ) 4(1 )
c cα θ α θ

β θ β θ
 − + −

< ⇔ − < + + 
 

we obtain 1 1 2 2 1 1 2ˆ ˆ ˆ ˆ( ( ), ) ( , )Defect Cooperateq q q q qπ π∗ >  for (0,1]θ ∈ . Moreover, we also get 

1 1 2 1 1 2ˆ ˆ( , ) ( , )Cooperate Cournotq q q qπ π ∗ ∗>  for (0,1]θ ∈  as we have, 

2 2
2

2

( ) ( ) 0
4 (1 ) (2 )

c cα α θ
β θ β θ
− −

> ⇔ >
+ +

 

so, the results in ii) are derived. ■ 

In what follows, we will consider the infinitely repeated game between the two 
firms. We let 0 1δ< <  denote the common discount factor. In order to make the 
notations more compact, we put, 

2

1
( )

4 (1 )
cαξ

β θ
−

≡
+

, 
2 2

2 2

( ) (2 2 )
8 (1 )
cα θ θξ
β θ

− + −
≡

+
.                               (10) 

2

3
1 (2 )( )

4(1 )
cθ αξ

β θ
 + −

≡  + 
, 

2

4 2

( )
(2 )

cαξ
β θ

−
≡

+
.                                (11) 
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Indeed, we will focus on the following two kinds of well-known behavior mode: 
TFT (tit-for-tat) and ALLD (always defect). Thus, based on Figure 1, we obtain 
the following normal-form game by using (10) and (11). 

 
 TFT               ALLD 

TFT 

ALLD 

1

1
ξ
δ−

          2 4 2( )
1

ξ ξ ξ δ
δ

+ −
−

 

3 4 3( )
1

ξ ξ ξ δ
δ

+ −
−

         4

1
ξ
δ−

 

Figure 2. Infinitely Repeated Game 

 

By Figure 2 and Lemma 1, the following lemma can be easily established. 

Lemma 2. It is assumed that Figure 1 provides us with a Prisoners’ Dilemma 
game, i.e., 3 1 4 2ξ ξ ξ ξ> > >  in (10) and (11). If 3 1

3 4
0 ξ ξ

ξ ξδ −
−< < , {ALLD, ALLD} will 

be the unique Nash equilibrium; if 3 1

3 4
1ξ ξ

ξ ξ δ−
− ≤ < , then there are two pure-strategy 

Nash equilibria {TFT, TFT} and {ALLD, ALLD}, a mixed-strategy Nash 
equilibrium represented by {( ,1 ), ( ,1 )}γ γ γ γ− −  in which 

4 2

1 2 3 4 4 2 3

( )(1 )
( ) (2 )

ξ ξ δγ
ξ ξ ξ ξ ξ ξ ξ δ

− −
=

− − + − − −
, 

and we also get that 

3 4 31 4 2 4 2( ) ( )
1 1 1 1

ξ ξ ξ δξ ξ ξ ξ ξ δ
δ δ δ δ

+ − + −
> > >

− − − −
. 

Proof. Noting that the corresponding proof is quite easy and hence we take it 
omitted. ■ 

Furthermore, by applying Lemma 2, we obtain the following result, 

Lemma 3. It is assumed that Figure 1 provides us with a Prisoners’ Dilemma 
game, i.e., 3 1 4 2ξ ξ ξ ξ> > >  in (10) and (11), and also we let 3 1

3 4
1ξ ξ

ξ ξ δ−
− ≤ < , i.e., 

Figure 2 is indeed a coordination game. Then it is easily seen that {TFT, TFT} 
Pareto (payoff) dominates {ALLD, ALLD}. Moreover, if 3 1 4 2

3 2
1ξ ξ ξ ξ

ξ ξ δ− + −
− < < , we get 

that {TFT, TFT} risk dominates {ALLD, ALLD}; if 3 1 3 1 4 2

3 4 3 2

ξ ξ ξ ξ ξ ξ
ξ ξ ξ ξδ− − + −
− −≤ < , then we 

have that {ALLD, ALLD} risk dominates {TFT, TFT}. 
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Proof. It is widely known that {TFT, TFT} (strictly) risk dominates {ALLD, 
ALLD} if and only if, 

3 4 31 4 2 4 2( ) ( )
1 1 1 1

ξ ξ ξ δξ ξ ξ ξ ξ δ
δ δ δ δ

+ − + −
− > −

− − − −
 

which implies that, 

3 1 4 2

3 2

1ξ ξ ξ ξ δ
ξ ξ

− + −
< <

−
 

Moreover, noting that, 

3 1 3 1 4 2
4 2 4 1

3 4 3 2

( )( ) 0ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ
ξ ξ ξ ξ

− − + −
> ⇔ − − >

− −
 

which contradicts with the assumption that Figure 1 provides us with a Prisoners’ 
Dilemma game. Therefore, we get, 

3 1 3 1 4 2

3 4 3 2

ξ ξ ξ ξ ξ ξ
ξ ξ ξ ξ

− − + −
<

− −
 

which gives the required result. ■ 

Why do we focus on the case that Figure 2 defines a coordination game? As 
argued by Tirole (1988), Martin (2002) and Levenstein and Suslow (2006), 
coordination is one of the most important problems facing any cartel and firms 
must be able to coordinate on an equilibrium in a situation in which there are 
often multiple equilibria. In other words, coordination game will provide us with a 
much better approximation to reality and it certainly implies much richer 
economic implications and this is why we directly suppose throughout that both 
TFT and ALLD are (strict) Nash-equilibrium strategies in Figure 2. And as you 
can see below, we mainly employ the well-known evolutionary mechanism in 
solving the present equilibrium-selection problem facing the firms in the 
underlying industry. 

 

3. Evolutionary characterization of cartel formation 
3.1. Frequency dependent processes 
Now, we will introduce the stochastic evolutionary game dynamics in finite 
populations that is quite similar to the well-known replicator dynamics for infinite 
populations. In particular, we will employ the Moran process that is well known 
in population genetics (Ewens, 2004) where it is normally used to study the 
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dynamics of constant selection in finite populations. Indeed, the Moran process 
describes a biological population with asynchronous reproduction, that is, a single 
individual is chosen to reproduction at any one time step. Thus, there would be 
overlapping generations in the process, which accordingly provides us with a 
possible approximation to the characteristic of the evolution of firms in any given 
industry. For example, fierce market competition implies that there are new 
entrants as well as incumbent firms for some given time interval and in most of 
the industries of the market economy. Provided that the time step of reproduction 
is sufficiently small, we may argue that the Moran process will be a suitable tool 
for our analysis of the evolutionary characterization of firm’s strategic behaviors. 
It is especially worthwhile mentioning that the results in the current section are 
directly brought from Taylor et al. (2004), Nowak et al. (2004) and Fudenberg et 
al. (2006). 

3.1.1. The Moran process 
Let us consider a symmetric game between two strategies, A and B, with payoff 
matrix, 

 A     B 

A 
B 

11a    12a  

21a    22a  

Figure 3. 11 21 22 12a a a a> > >  

The fitness of strategies A and B with payoff matrix in Figure 3 is, respectively, 
given by, 

11 12[ ( 1) ( )]1
1i

w a i a N if w
N

− + −
= − +

−
, 21 22[ ( 1)]1

1i
w a i a N ig w

N
+ − −

= − +
−

 

in which i  denotes the number of individuals using strategy A, and [0,1]w∈  
specifies the contribution of the game to the fitness. This parameter w , quanti-
fying the intensity of selection, cancels out in deterministic replicator dynamics of 
infinite populations, but plays a crucial role in finite populations (e.g., Nowak et 
al., 2004; Fudenberg et al., 2006; Imhof and Nowak, 2006). Let us compare if  
and ig  for each i  in order to evaluate whether selection acts to increase or reduce 
the number of A players at position i . Put, 

11 12 21 22[ ( 1) ( ) ( 1)]
1i i i

wh f g a i a N i a i a N i
N

≡ − = − + − − − − −
−

                       (12) 
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which yields that ih  is a linear function of i  defined on 1,..., 1i N= − . Invasion 
dynamics can be characterized by evaluating the sign of 1h  and 1Nh − . If 1 0h >  
then we say “selection favors A invading B”. If 1 0Nh − <  then we say “selection 
favors B invading A”. These invasion criteria evaluate whether a single individual 
of A (or B) has a higher fitness than the resident population. 

At each time step, an individual is chosen for reproduction proportional to its 
fitness. One identical offspring is being produced which replaces another 
randomly chosen individual. Thus the population size, N , is strictly constant. 
And at each time step, the number of A individuals can either increase by one, 
stay the same or fall by one. Consequently, the transition matrix of the Markov 
process is tri-diagonal and defines a birth-death process. The transition matrix is 
given by, 

, 1 ( )
i

i i
i i

if N iP
if N i g N+

−
=

+ −
, , 1

( )
( )

i
i i

i i

N i g iP
if N i g N−

−
=

+ −
, , , 1 , 11i i i i i iP P P+ −= − −  

all other entries of the transition matrix are 0. 

In this paper, we are particularly interested in the probability that a single A 
individual reaches fixation in a population of B individuals. This probability is 
given by, 

1

1 1

1

1
AB jN k

j k
k

g
f

ρ
−

= =

=
+∑ ∏

 

which is derived by Nowak et al. (2004), Fudenberg et al. (2006), and Imhof and 
Nowak (2006). And if 1AB Nρ > , then selection favors A replacing B. 
Deterministic replicator dynamics of infinite populations admit an unstable 
equilibrium at a frequency of A given by 22 12 11 12 21 22( ) ( )x a a a a a a∗ = − − − + . If 
the initial frequency of A is less than x∗ , then it will be eliminated by natural 
selection. A can only replace B if its initial frequency exceeds this invasion barrier. 
The following theorem and definition are established by Nowak et al. (2004). 

Theorem 1. For a given population size N  and sufficiently weak selection (small 
w ), selection favors A replacing B if 11 12( 2) (2 1)a N a N− + − 21( 1)a N> + +  

22 (2 4)a N − . For the smallest possible population size, 2N = , we obtain 

12 21a a> . For the limit of large N , we obtain 11 12 21 222 2a a a a+ > + , which is 
equivalent to 1 3x∗ < . Moreover, if 1 3x∗ < , then there is a minimum N , i.e.,  
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min 11 12 21 22 11 12 21 22(2 4 ) ( 2 2 )N a a a a a a a a≡ + + − + − −  

such that 1AB Nρ > . 

Definition 1. (Evolutionary Stability). For finite population size, N , we propose 
that B is an evolutionary stable strategy (ESS) if two conditions hold: (i) selection 
opposes A invading B, which means that a single mutant of A in a population of B 
players has a lower fitness; and (ii) selection opposes A replacing B, which means 

1AB Nρ < . So, strategy B is ESS if 12 21 22( 1) ( 2)a N a a N− < + −  and 11( 2)a N − +  

12 21 22(2 1) ( 1) (2 4)a N a N a N− < + + − . For 2N =  both conditions thus reduce to 

12 21a a< . For large populations, the two conditions lead us to 12 22a a<  and 
1 3x∗ > , respectively. 

 

3.1.2. Perturbed Moran process 
In this subsection, we will introduce mutation into the Moran process discussed 
above. That is, we assume that with probability 0ABµ > , an A-offspring is a 
mutant which plays B instead of A, and with probability 0BAµ > , a B-offspring 
plays A. After reproduction, the offspring replaces a randomly chosen member of 
the population, so that the population size is constant. The process ( )X t  that 
describes the number of individuals that use A is a Markov process with state 
space {0,...., }N  and transition matrix ( )ijP , where 0ijP =  if | | 1i j− > , 

01 001BAP Pµ= = − , , 1N NP − =  1AB NNPµ = −  and for 1,..., 1i N= − , 

, 1
(1 ) ( )

( )
i AB i BA

i i
i i

if N i g N iP
if N i g N
µ µ

+

− + − −
=

+ −
          (13) 

, 1
( ) (1 )

( )
i AB i BA

i i
i i

if N i g iP
if N i g N

µ µ
−

+ − −
=

+ −
         (14) 

, , 1 , 11i i i i i iP P P+ −= − −             (15) 

Now, the following theorem can be established, 

Theorem 2. Let N →∞ , 1AB Nµ κ→ , 2BANµ κ→  with 1 20 ,κ κ< < ∞ . If we have 
0i i ih f g= − =  for {0,...., }i N∀ ∈ , then the limiting distribution of the process 

( )X t  follows a Beta distribution with parameters 1κ  and 2κ  given above. 

Proof. See Appendix A. ■ 
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One can also refer to Fudenberg and Imhof (2006, 2008) for much more general 
results about the equilibrium selection and limit distribution in such kind of 
evolutionary dynamics. 

3.2. Evolutionary analysis on firm’s behavior 
Based upon Figure 2, (12) can be written as follows, 

3 4 31 2 4 2 4( )( )( 1) ( ) ( 1)
1 1 1 1 1i

wh i N i i N i
N

ξ ξ ξ δξ ξ ξ ξ δ ξ
δ δ δ δ

+ −+ − = − + − − − − − − − − − − 
 

(16) 

So, based on the results in the previous section, we get, 

Proposition 1. For the infinitely repeated game defined in Figure 2, selection 
does not favor TFT invading ALLD. And selection favors ALLD invading TFT if 
we put 3 1 3 1 1 2

3 4 3 4 4 2

( )( 1)
( )( 1)[ , )N

N
ξ ξ ξ ξ ξ ξ
ξ ξ ξ ξ ξ ξδ − − − + −
− − − + −∈ . 

Proof. By using (16), it is easily shown that 1 0 1h δ> ⇔ > . This implies that 
selection does not favor TFT invading ALLD. Also by (16), we get, 

3 1 1 2
1

3 4 4 2

( )( 1)0
( )( 1)N

Nh
N

ξ ξ ξ ξδ
ξ ξ ξ ξ−

− − + −
< ⇔ <

− − + −
 

And it is demonstrated that, 

3 1 1 2 3 1
1 2 3 4 3 1 4 2

3 4 4 2 3 4

( )( 1) ( )( ) ( )( )
( )( 1)

N
N

ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ
ξ ξ ξ ξ ξ ξ

− − + − −
≥ ⇔ − − ≥ − −

− − + − −
 

which always holds due to the fact 3 1 4 2ξ ξ ξ ξ> > >  of Figure 1. Hence, the proof 
is complete. ■ 

Although it is assumed that both ALLD and TFT are (strict) Nash-equilibrium 
strategies in Figure 2, Proposition 1 proves that stochastic evolutionary selection 
favors ALLD invading TFT, i.e., a single ALLD-firm has a higher fitness than the 
resident TFT-firms, when the discount factor is strictly less than 

3 1 1 2

3 4 4 2

( )( 1)
sup( )( 1)

N
N

ξ ξ ξ ξ
ξ ξ ξ ξ δ− − + −
− − + − ≡ . As you can see, supδ  strictly relies on the number of firms in 

the industry under consideration (or the industry concentration), the parameter θ  
that measures the extent of substitution between the products (or asymmetry 
between the products or firms) and also the fixed marginal cost c  by noting the 
definitions given in (10) and (11). Furthermore, Proposition 1 also demonstrates a 
robust claim that selection driven by the Moran process does not favor TFT 
invading ALLD, i.e., a single TFT- firm can never have a fitness higher than the 
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resident ALLD-firms, even if TFT both payoff and risk dominates ALLD (making 
use of Lemma 3). To sum up, Proposition 1 highlights the great incentive to cheat 
facing the firms from the viewpoint of stochastic group evolution, thereby 
undermining the firms’ attempts to collude when we employ the classic as if 
hypothesis for the firms in the industry and also from the ex post perspective. 

Proposition 2. (Full Collusion). If there are only two firms in the industry, we 
obtain that selection does not favor TFT replacing ALLD. For the limit of large 
N , selection favors TFT replacing ALLD if 3 1 4 2 3 1

3 4 3 4 2

2( )
2max{ , }ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξδ − − + −
− + −> . 

Furthermore, there is a minimum number of firms, 

1 2 3 4 4 2 3
min

1 2 3 4 4 2 3

(2 4 ) (2 )
( 2 2 ) ( 2 )

N ξ ξ ξ ξ ξ ξ ξ δ
ξ ξ ξ ξ ξ ξ ξ δ

+ + − + − −
=

+ − − + − +
 

such that selection favors TFT replacing ALLD. 

Proof. Combining Theorem 1 with Figure 2 easily confirms the desired results. In 
particular, by (16) and Lemma 2, 

4 2 3 1

3 4 2

2( )1
3 2

ξ ξ ξ ξγ δ
ξ ξ ξ
− + −

< ⇔ >
+ −

 

and also, 

4 2 3 1
4 1

3 4 2

2( ) 1
2

ξ ξ ξ ξ ξ ξ
ξ ξ ξ
− + −

< ⇔ <
+ −

 

which holds because Figure 1 is assumed to be a Prisoner’s Dilemma game. Thus, 
the proof is complete. ■ 

Proposition 2 establishes the explicit conditions based on which stochastic 
evolutionary selection driven by the Moran process favors full collusion in the 
underlying industry, thereby leading us to the endogenous cartel formation. As a 
matter of fact, full collusion can be reached as long as there are sufficiently many 
firms in the industry and the firms are sufficiently patient. And we have further 
derived the closed-form solutions of the minimum number of firms (it depends on 
discount factor δ , the parameter θ  measuring the extent of substitution between 
the products and the fixed marginal cost c ) and the minimum discount factor (it 
relies on the parameter θ  measuring the extent of substitution between the 
products and the fixed marginal cost c ) so that full collusion is identified in the 
industry under consideration and also in stochastic evolutionary sense. 

What is the corresponding economic intuition of the results shown in Proposition 
2? First, in a repeated setting, the threshold discount factor in Proposition 2 
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implies that as if the firm in the industry weighs the expected gain from cheating 
today with the expected reduction or cost of cheating in future even from the 
perspective of group-level stochastic evolution rather than rational individual 
choice. Second, the number of firms discussed in Proposition 2 naturally leads us 
to the crucial concept of industry concentration and the threshold minN  in 
Proposition 2 sufficiently captures the tradeoff between the following two 
opposite effects in stochastic evolutionary sense: on the one hand, an increase in 
concentration increases each individual firm’s payoff from collusion, thereby 
facilitating collusion as argued by early Structure- Conduct-Performance theorists 
such as Bain (1951, 1956, 1959), while on the other hand, the value of each firm’s 
share of collusive industry profits declines as the number of firms in the industry 
increases. That is, in order for firms to be as if willing to refrain from cheating in 
the present evolutionary environment, there must be a critical value of the number 
of firms provided any value of the discount factor, any value of the marginal cost 
and any value of the extent of asymmetry between the products or firms. In 
addition to that, as emphasized by Sutton (1991, 1998) and Symeonidis (2002) 
that concentration is not exogenous to the history of collusion in the industry, 
industry concentration is indeed endogenously determined in Proposition 2. And it 
would be regarded as a long-run equilibrium by noting that the present exploration 
focuses on evolutionary analysis of industrial organizations. 

Proposition 3. If there are two firms in the industry, then ALLD is an 
evolutionary stable strategy (ESS) in the sense of Definition 1. Moreover, if there 
is a large number of firms in the industry, then ALLD is an evolutionary stable 
strategy (ESS) when 3 1 4 2 3 1

3 4 3 4 2

2( )
2[ , )ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξδ − − + −
− + −∈ . 

Proof. Using Definition 1, Figure 2 and Proposition 2 confirms the required 
assertion. Here we just check that 3 1 4 2 3 1

3 4 3 4 2

2( )
2

ξ ξ ξ ξ ξ ξ
ξ ξ ξ ξ ξ
− − + −
− + −< . In fact, 

4 2 3 1 3 1

3 4 2 3 4

2( )
2

ξ ξ ξ ξ ξ ξ
ξ ξ ξ ξ ξ
− + − −

>
+ − −

 

4 2 3 4 3 1 3 4 3 1 3 4 22( )( ) ( )( ) ( )( 2 )ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ⇔ − − + − − > − + −  

4 2 3 4 3 1 4 22( )( ) 2( )( )ξ ξ ξ ξ ξ ξ ξ ξ⇔ − − > − −  

1 4ξ ξ⇔ >  

which always holds true since we have supposed that Figure 1 provides us with a 
Prisoner’s Dilemma game, i.e., 3 1 4 2ξ ξ ξ ξ> > > . As a consequence, the proof is 
complete. ■ 
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If there are only two firms in the industry, then the non-cooperative strategy 
ALLD will be an ESS, that is, a single mutant of TFT-firm in a group of ALLD-
firm has a lower fitness and stochastic evolutionary selection opposes the 
cooperative strategy TFT replacing the non-cooperative strategy ALLD. 
Moreover, if there are a large number of firms in the industry, then the non-
cooperative strategy ALLD will be an ESS only when certain requirement is 
imposed on the discount factor. Indeed, we have derived the threshold 

4 2 3 1

3 4 2

2( )
sup 2

ξ ξ ξ ξ
ξ ξ ξδ − + −
+ −≡ , which is endogenously determined by the important parameters 

θ  and c  owing to the definitions given by (10) and (11).  

Although Proposition 3 focuses on the evolutionary stability of the non- 
cooperative strategy ALLD, it is especially worth emphasizing that it is not 
necessarily implying that the cooperative strategy TFT is evolutionary unstable. 
So, what’s the underlying implication of Proposition 3? As argued by the classic 
article of Stigler (1964), Proposition 3 highlights potential cheating as the 
preeminent challenge that cartels face in repeated interactions and also in 
stochastic evolutionary sense. In fact, Proposition 3 strengths the argument of 
Stigler by identifying that cheating can be evolutionary stale under relatively 
weak conditions. To summarize, Proposition 3 yields that cartel formation faces 
much stronger challenge in the present stochastic evolutionary environment. 

Proposition 4. (Partial Collusion). There exists 3 1

3 4

ξ ξ
ξ ξδ −
−≥  such that 0ih =  in (16) 

for {0,...., }i N∀ ∈ . Let N →∞ , 1AB Nµ κ→ , 2BANµ κ→  with 1 20 ,κ κ< < ∞ , 
then the limiting distribution of the stochastic process ( )X t  is a Beta distribution 
with parameters 1κ  and 2κ  given above. 

Proof. We just need to show that there exists 3 1

3 4

ξ ξ
ξ ξδ −
−≥  such that 0ih =  in (16) for 

{0,...., }i N∀ ∈ . And the remaining proof is quite similar to that of Theorem 2. By 
(16), 

3 4 1 2

4 2 4 3

( 1) ( 1) ( )0 ( , )
( )( ) ( )i

i N i i N ih i N
N i i

ξ ξ ξ ξδ
ξ ξ ξ ξ

+ − − − − − −
= ⇔ =

− − − −
 

Noting that, 

[ ]
1 4 4 3 4 2

2
4 2 4 3

( )[ ( )( 1)]( , ) 0
( )( ) ( )

Ni N
i N i i

ξ ξ ξ ξ ξ ξδ
ξ ξ ξ ξ
− − − − −∂

= <
∂ − − − −

 

due to the fact that 3 1 4 2ξ ξ ξ ξ> > >  in Figure 1. Thus, we get, 
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3 1

3 4

min min ( , ) lim lim ( , )
N i N i N

i N i N ξ ξδ δ
ξ ξ→∞ →

−
= =

−
 

which shows the required assertion. ■ 

Intuitively, Proposition 4 shows that there is a minimum value 3 1

3 4min
ξ ξ
ξ ξδ −
−≡  (it is 

especially worth noting from (10) and (11) that this value is endogenously 
determined by two parameters, i.e., the parameter θ  measuring the extent of 
substitution between the products and the fixed marginal cost c ) of the discount 
factor such that neither selection favors ALLD invading TFT nor selection favors 
TFT invading ALLD in the underlying evolutionary game characterizing the 
endogenous changes of organizational structures in evolutionary sense. In other 
words, provided the repeated interactions between the firms and also provided the 
firms are sufficiently patient, a single ALLD-firm cannot invade into a group of 
TFT-firms and a single TFT-firm cannot invade into a group of ALLD-firms in 
stochastic evolutionary sense. 

What is more, it is demonstrated in Proposition 4 that the limiting distribution of 
the Markov process ( )X t  which represents the number of TFT-firms at time t  
follows a Beta distribution as long as the firms are sufficiently patient, the number 
of the firms in the given industry is sufficiently large and the mutations of the 
underlying evolutionary dynamics are sufficiently small. In spite of full collusion 
(e.g., all firms employ the cooperative strategy TFT in repeated interactions) may 
not be established in the present case, we indeed have a explicit characterization 
of the limiting distribution of the number of colluded firms in the given industry 
and in the circumstance corresponding to Proposition 4. In other words, such kind 
of cartel is indexed by the number of the firms that use cooperative strategy TFT 
in repeated interactions. Meanwhile, it would be easily seen from Proposition 4 
that the endogenously formed cartel exhibits asymptotic stability in certain sense. 

 

4. Concluding remarks 
What are the explicit conditions which support stochastic evolutionary cartel 
formation? Can we establish full collusion or at least partial collusion under a 
given evolutionary mechanism? How encompassing is a cartel in evolutionary 
sense? In spite of the large body of theoretical work on collusion, there is little 
research that addresses these questions within the evolutionary game theory 
framework. The objective of our research is to shed some light on these questions 
and we reexamine some classic arguments about cartel formation in stochastic 
evolutionary sense, i.e., we employ the methodology of stochastic group evolution 
rather than the principle of rational individual choice. We find that the issue of 
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cartel formation is essentially an equilibrium-selection problem in our model, and 
also our study focuses on long-run equilibrium due to the characteristics of 
industrial evolution in reality. 

First, it is shown that cheating can be an evolutionary stable strategy (ESS) under 
relatively weak conditions, and hence cartel formation is faced with much 
stronger challenge in the present evolutionary framework. Second, we have 
derived the minimum number of firms in the underlying industry (or the threshold 
of industry concentration) that supports full collusion in stochastic evolutionary 
sense. A third finding is that, in a mutation-selection dynamics, there exists a 
minimum discount factor such that partial collusion can be established when the 
number of firms is sufficiently large and the mutations are sufficiently small. 
Finally, it is worthwhile mentioning that the discount factor still plays a crucial 
role in the current evolutionary model and the corresponding domain is 
endogenously determined by the parameter measuring the extent of substitution 
between the products (or asymmetry between the products or firms) and the fixed 
marginal cost. Noting that we just construct a simple model from the evolutionary 
perspective, rich extensions can be done based on our framework and we leave it 
to future work. 

 

Appendix A 
Proof of Theorem 2. Some of the results are brought from Karlin and Taylor 
(1975, pp.141-144). If 0i i ih f g= − =  for {0,...., }i N∀ ∈ , then the transition 
matrix defined by (13)-(15) can be rewritten as follows, 

, 1 1 (1 ) 1i i AB BA
i i iP
N N N

µ µ+

    = − − + −        
 

, 1 1 (1 )i i AB BA
i i iP
N N N

µ µ−

  = + − −    
 

, , 1 , 11i i i i i iP P P+ −= − −  

The stochastic process described above is thus a birth and death process with a 
finite number of states {0,...., }i N∈  whose infinitesimal birth and death rates are, 
respectively, given by, 

1 (1 ) 1i AB BA
i i i
N N N

λ λ µ µ    ≡ − − + −        
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1 (1 )i AB BA
i i i
N N N

µ λ µ µ  ≡ + − −    
 

in which we have assumed that the probability that the state changes during the 
time interval ( , )t t + ∆  is ( )oλ∆ + ∆  independent of the values of ( )X t  and that 
the probability of two or more changes occurring in a time interval ∆  is ( )o ∆  
with some constant 0λ > . So, we obtain, 

2

( ) (1 ) 1i AB BA
N i Fi
N i

λλ µ µ−  = − − + 
 

 

2

( ) (1 ) 1i AB BA
N i Hi
N N i

λµ µ µ−  = − − + − 
 

where (1 )BA AB BAF Nµ µ µ≡ − −  and (1 )AB AB BAH Nµ µ µ≡ − − . Put, 

0 1 1

1 2

k
k

k

λ λ λπ
µ µ µ

−≡
L

L
 

Then we obtain, 
1 1

1 1

log log 1 log 1 log( ) log ( ) 1
k k

k
i i

F H HNF N k k
i N i N k

π
− −

= =

      = + − + + − − +      − −      
∑ ∑  

Making use of Taylor expansion and letting k →∞ , 
1

1

log 1 ~ log( )
k

F
k

i

F k
i

ε
−

=

 + + 
 

∑  

1

1
log 1 ~ log

( )

Hk

kH
i

H N
N i N k

ς
−

=

  + +   − −   
∑  

where limk kε→∞ < ∞  and limk kς→∞ < ∞ . Thus, 

( )log ~ log
( )

F H

k k F

k N k NF
N N k k

π η
 −
 − 

, k →∞                              (A.1) 

where we let lim lim ( )k k k k kη ε ς η→∞ →∞≡ + ≡ . Noting that 2F κ→  and 1H κ→  
as N →∞ , we get, 

2 2 11 1 1
2~ (1 )k N x xκ κ κπ ηκ − − −− , N →∞  

in which [ ]k Nx≡  is an integer. By (A.1), we arrive at, 
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1 11 1

0 0

1 ~ 1
F HN N

k kF
k k

F k k
N N N N

π η
− −− −

= =

   −   
   

∑ ∑  

the right hand of which is the Riemann sum approximation of, 

2 1
1 1 1

2 0
(1 )x x dxκ κκ η − −−∫  

Thus, 

2 2 1
1 1 1

2 0
0

~ (1 )
N

k
k

N x x dxκ κ κπ κ η − −

=

−∑ ∫  

So that the resulting density on [0,1]  is, 

2 1 2 1

2 1 2 1

1 1 1 1

1 11 1 1 1
0 0 0

1 (1 ) (1 )~ ~
(1 ) (1 )

k
N

ii

x x x x dx
N x x dx x x dx

κ κ κ κ

κ κ κ κ

π
π

− − − −

− − − −
=

− −

− −∑ ∫ ∫
 

since ~ 1dx N . This is a Beta distribution with parameters 1κ  and 2κ . ■ 

 

 

 
Note 
 
(1) Although there are some papers such as Jovanovic (1982), Cabral and Mata (2003) and Malerba 
(2006) study firm’s behavior and industrial organization from the evolutionary perspective, little 
research focuses on evolutionary analysis of cartel formation. And hence the present exploration 
can be regarded as an effective supplement to this issue. 
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