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Abstract. This paper is focused on the optimal execution of portfolio transactions 
considered as a stochastic optimal control problem. The main novelty of this work consists 
in a new methodology, introduced in Udrişte and Damian in 2011, for the stochastic 
optimal control problems, applied to Almgren and Chriss execution model. In addition to 
Udrişte (2015), this paper highlights our original ideas and certifies that the new above 
mentioned method is viable in this framework.  
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1. Introduction 

The basic question in optimal liquidation problem is: What is the schedule of executing a 
portfolio with ݔ଴ shares? The classical trade-off in this subject refers to that liquidating 
fast may be too expensive versus liquidating too slowly, the price may go down and we 
would have been better executing faster. With this respect, we need to find an optimal 
trading schedule. The recognized seminal work in this sense is the article Almgren and 
Chriss (2000), which defined the objective function as an execution cost that prompts 
agents to spread their executions while their risk aversion spurs them to trade fast. 
Another generation of models appeared along with the paper of Obizhaeva and Wang 
(2013)(1). These models consider the execution cost in Almgren and Chriss framework 
linked to the order book dynamic and its resilience. The third generation of models 
applied to optimal liquidation was developed by Guéant, Lehalle and Fernandez-Tapia 
(2012) and uses the Avellaneda-Stoikov framework introduced in 2008. 

In this paper, we resolve the Almgren-Chriss model using our new methodology in 
solving stochastic optimal control problems, introduced in Udrişte and Damian in 2011. 

 

2. Stochastic optimal control theory 

In Udrişte and Damian (2011), we proposed a new paradigm in approaching stochastic 
optimal control problems, in the sense of Pontryagin, which represents a relevant 
contribution in the existing (and various) related literature, the main idea being based on a 
geometric interpretation for the classical tools in stochastic calculus. This new 
methodology assumes the hypotheses that the optimal control is in the interior of the set 
of admissible controls and that the variational calculus techniques can be applied. 

Stochastic optimal control problems have some common features: (i) there is a constraint 
diffusion system, which is described by an Itô stochastic differential system; (ii) there are 
some other constraints that the decisions and/or the state are subject to; (iii) there is a 
criterion that measures the performance of the decisions. The goal is to optimize the 
criterion (cost functional) by selecting a non-anticipative decision among the ones 
satisfying all the constraints. 

Given a filtered probability space, satisfying the usual conditions, on which a Թௗ vector-
valued Brownian motion process ሺ࡮௧ሻ௧∈ሾ଴,்ሿ is defined, we consider a constraint as a 
controlled stochastic system: 

௜,௧ݔ݀ ൌ ,ݐ௜ሺߤ ,௧ݔ ݐ௧ሻ݀ݑ ൅෍ߪ௜,௔ሺݐ, ,௧ݔ ௔,௧ܤ௧ሻ݀ݑ

ௗ

௔ୀଵ

, (2.1)

where ࣆ ∈ Թ௡ , ࣌ ∈ Թ௡ൈௗ  are, respectively differentiable functions, and ࢞௧ ൌ
൫ݔଵ,௧, … , ௡,௧൯ݔ ∈ Թ௡  is the solution of SDE (1). The stochastic process ሺ࢛௧ሻ௧∈ሾ଴,்ሿ ∈

Թ௞ is called control and we require that it gives rise to a unique solution ࢞௧ ൌ ࢞௧
ሺ௨ሻ of 

SDE (1). Next, we introduce the cost functional as follows: 
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ሺ∙ሻ൯ݑ൫ܬ ൌ ॱ ቎න݂ሺݐ, ,௧ݔ ݐ௧ሻ݀ݑ

்

଴

൅ Ψሺ்ݔሻ቏, (2.2)

where ݂ and Ψ are real-valued functions. The simplest stochastic optimal control problem 
can be stated as follows: 

Find			 max
ሺ࢛೟ሻ೟∈ሾబ,೅ሿ

ሺ∙ሻ൯ݑ൫ܬ 			constrained by ሺ1ሻ. (2.3)

In order to solve the problem (3), we introduce the control Hamiltonian stochastic 
functional, defined by: 

࣢ሺݐ, ࢞௧, ࢛௧, ௧ሻ࢖ ൌ ݂ሺݐ, ,௧ݔ ݐ௧ሻ݀ݑ ൅ 

൅቎෍݌௜,௧ ∙ ௜,௧ߤ െ ෍ ෍ ௜,௧݌ ∙
௜,௔ߪ߲
௝ݔ߲

∙ ௝,௕ߪ ∙ ௔,௕ߜ

ௗ

௔,௕ୀଵ

௡

௜,௝ୀଵ

௡

௜ୀଵ

቏  ,ݐ݀
(2.4)

where ߜ௔,௕ denotes the Kronecker symbol, defined by ߜ௔,௕ ൌ 1, if ܽ ൌ ܾ and ߜ௔,௕ ൌ 0 for 
ܽ ് ܾ. 

Theorem (Udrişte and Damian, 2011). Suppose that the control problem (2.3), constrained 
by (2.1), has an interior optimal solution ሺ࢛௧

∗ሻ௧∈ሾ଴,்ሿ, which determines the stochastic optimal 
evolution ሺ࢞௧ሻ௧∈ሾ଴,்ሿ. Let ࣢ be the Hamiltonian stochastic functional (2.4). Then there exists 
an adapted process ሺ࢖௧ሻ௧∈ሾ଴,்ሿ ∈ Թ௡ (namely adjoint process) satisfying: 
(i) the initial stochastic differential system: 

௜,௧ݔ݀ ൌ
߲࣢
௜݌߲

൅ ෍ ෍
௜,௔ߪ߲
௝ݔ߲

∙ ௝,௕ߪ ∙ ௔,௕ߜ

ௗ

௔,௕ୀଵ

௡

௜,௝ୀଵ

ݐ݀ ൅෍ߪ௜,௔

ௗ

௔ୀଵ

௔,௧; (2.5)ܤ݀

(ii) the adjoint linear stochastic differential system: 

௜,௧݌݀ ൌ െ
߲࣢
௜ݔ߲

ሺݐ, ࢞௧, ࢛௧∗, ௧ሻ࢖ െ෍෍݌௝,௧ ∙
௝,௔ߪ߲
௜ݔ߲

ௗ

௔ୀଵ

௡

௝ୀଵ

௔,௧ܤ݀ with ்,௜݌ ൌ
߲Ψ
௜ݔ߲

; (2.6)

(iii) the critical point condition: 

߲࣢
௖ݑ߲

ሺݐ, ࢞௧, ࢛௧∗, ௧ሻ࢖ ൌ 0			for each ܿ ∈ ሼ1,… , ݇ሽ; (2.7)

 

3. Optimal Trade Execution in the Almgren and Chriss Framework 

We consider the problem of liquidating the amount of ݔ଴ shares of certain stock within 
the time interval ሾ0, ܶሿ. Let us denote by ݔ௧ the number of shares that the investor holds 
at the current time ݐ ∈ ሾ0, ܶሿ, where ܶ denotes the liquidation process maturity. Let ሚܵ௧ be 
the price at which we transact. In this article, we suppose that the price dynamic follows 
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the Almgren-Chriss model. In this framework, the transacted price ሚܵ௧  consists of the 
unaffected (or fair) price, given by a semi-martingale and denoted by ܵ௧, and a slippage. 
The unaffected price ܵ௧ is the solution of the following stochastic equation: 

൜
differential form:

integral form:
݀ܵ௧ ൌ ௧ݔ݀ߛ ൅ ݐ݀ߤ ൅ ௧ܤ݀ߪ

ܵ௧ ൌ ܵ଴ െ ଴ݔߛ ൅ ௧ݔߛ ൅ ݐߤ ൅ ௧ܤߪ
  (3.1)

The mid-price, affected by trading, incorporates a slippage given by the real function : 

ሚܵ௧ ൌ ܵ௧ ൅ ݄ሺݒ௧ሻ, (3.2)
where ݒ௧ ∶ൌ ௧ݒ ሶ௧ (orݔ ∶ൌ െݔሶ௧ when liquidating positions) is the rate of trading. In the 
literature, the term ݔ݀ߛ௧  is interpreted as permanent impact, while the function  as 

temporary impact. Following the classical Almgren-Chriss framework, we assume that 
ߛ ൌ ߤ ൌ 0 and the temporary impact function  to be linear with respect to the rate of 

trading: ݄ሺݒ௧ሻ ൌ ߟ ∙  .௧ݒ

In this article, we consider the problem of optimal execution as a stochastic optimal 
control problem and we solve it using the methodology described in Section 2. With this 
respect, we consider the objective functional to be the risk-unadjusted cost of trading 
(i.e., with no penalty for risk), given by: 

ࣝ ൌ ॱ ቎න ሚܵ௧ݒ௧

்

଴

቏ݐ݀ ൌ ॱ ቎නሺܵ௧ ൅ ߟ ∙ ௧ݒ௧ሻݒ

்

଴

቏, (3.3)ݐ݀

where the state vector is ࢞௧ ൌ ሺܵ௧,  ௧. Thus, the controlݒ ௧ሻ, and the control variable isݔ
problem (2.3) becomes: 

max
௩೟

ቐെॱ ቎නሺܵ௧ ൅ ߟ ∙ ௧ݒ௧ሻݒ

்

଴

቏ቑ, (3.4)ݐ݀

The dynamics of the state variables are, respectively: 

൜
݀ܵ௧ ൌ ,௧ܤ݀ߪ
௧ݔ݀ ൌ െݒ௧݀ݐ.

  (3.5)

The Hamiltonian stochastic functional (2.4) is, in this case: 

࣢ሺݐ, ܵ௧, ,௧ݒ ௧ሻ࢖ ൌ െሾܵ௧ ∙ ሶ௧ݔ െ ߟ ∙ ሺݔሶ௧ሻଶሿ݀ݐ ൅ ଶ,௧݌ ∙ (3.6) ,ݐሶ௧݀ݔ

where ݒ௧ ∶ൌ െݔሶ௧, and ࢖௧ ൌ ൫݌ଵ,௧,  ଶ,௧൯ denotes the adjoint process, and all coefficients݌

of ݌ଵ,௧ are null in the expression of the Hamiltonian. It is obviously that property (2.5), 
applied to (3.6), generates the dynamics of the state variables, given in (3.5). The adjoint 
linear differential stochastic system (2.6) is reduced at one equation only (because of null 
coefficients of ݌ଵ,௧): 

ଶ,௧݌݀ ൌ െൣܵ௧ ∙ ሷ௧ݔ െ 2 ∙ ߟ ∙ ሶ௧ݔ ∙ ሷ௧ݔ െ ଶ,௧݌ ∙ (3.7) .ݐሷ௧൧݀ݔ
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The critical point condition (2.7), applied to (3.6), yields to the representation of adjoint 
variable ݌ଶ,௧ as function of the control variable ݒ௧: 

ଶ,௧݌ ൌ ܵ௧ ൅ 2 ∙ ߟ ∙ ௧. (3.8)ݒ

Replacing (3.8) in (3.7), we obtain the optimal value of the control variable: 

∗௧ݒ ൌ
଴ݔ
ܶ
. (3.9)

With this result, we deduce the optimal trajectory of liquidation problem: 

∗௧ݔ ൌ ଴ݔ ∙ ൬1 െ
ݐ
ܶ
൰. (3.10)

In a similar manner, we are able to solve the general Almgren and Chriss framework, 
which presupposes to add the risk term, in the objective functional, that adjusts the 
variance of the trading cost: 

ॽ८Թሾࣝሿ ൌ ॽ८Թ቎නݔ௧

்

଴

݀ܵ௧቏ ൌ ଶߪ න ௧ଶݔ
்

଴

(3.11) .ݐ݀

Then, the expected cost of trading is given by: 

ࣝ ൌ ሶ௧ଶݔනߟ
்

଴

ݐ݀ ൅ ߣ ∙ ଶߪ ∙ න ௧ଶݔ
்

଴

(3.12) ,ݐ݀

for some price of risk ߣ. Interesting in this representation is the analogy to Physics: the 
first term is similar to kinetic energy, while the second term it seems to be the potential 
energy of a system. Applying the methodology exposed in Section 2, we obtain the 
optimal solution of this problem: 

∗௧ݔ ൌ ଴ݔ
sinh ሺܶߢ െ ሻݐ

sinh ܶߢ
,			with	ߢ ൌ

ଶߪߣ

ߟ
. (3.13)

If we consider another measure of risk (e.g., Value-at-Risk – VaR) instead of variance, 
the expected cost of trading is given by: 

ࣝ ൌ ሶ௧ଶݔනߟ
்

଴

ݐ݀ ൅ ߣ ∙ ߪ ∙ න ௧ݔ

்

଴

(3.14) ,ݐ݀

for some price of risk ߣ. Solving this problem by applying the methodology presented in 
Section 2, we get the optimal and state variable, respectively: 

∗௧ݒ ൌ 2 ∙ ଴ݔ ∙ ൬1 െ
ݐ
ܶ
൰ 			and			ݔ௧∗ ൌ ଴ݔ ∙ ൬1 െ

ݐ
ܶ
൰
ଶ

. (3.15)
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Final Remark. All the solutions obtained in (3.9) – (3.10), (3.13) and (3.15) are 
concordant to those existing in the literature, so our methodology is a viable alternative to 
the classical one. 
 

4. Conclusions 

Alternatively to the classical literature, we proposed a new proof of the optimal schedule in 
the Almgren-Chriss model. This approach is different from those existing in the classical 
literature. As a purpose for a future research, we can formulate and solve the multi-time 
version of the Almgren and Chriss model. The mathematical framework was established in 
Udrişte and Damian (2011a). The aim of this generalization is to incorporate in price 
dynamics another components such as behavioral aspects in trading process. 
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