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Abstract. The primary objectives of this paper are to empirically create an univariate 
Autoregressive Integrated Moving-Average (model) using Box-Jenkins methodology to forecast 
Romanian inflation and inspect the prediction performance of the estimated model between October 
2021 and October 2022. This study uses Ordinary Least Squares (OLS) technique for estimation 
purposes. On the foundation of different selection assessment and diagnostic criteria, the best model 
is selected to predict inflation in Romania in the short-run. We find that ARIMA (7, 1, 1) model is a 
suitable one under model identification, parameters estimation, diagnostic checking, and inflation 
prediction. In-sample forecasting is performed and the estimated ARIMA model reasonably tracks 
the actual inflation in the sample period.  
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1. Introduction 

Inflation represents one of the most significant macroeconomic variables and the most 
worried by the economic agents, including the government, because it brings severe 
influence on the level of the welfare and on the architecture of the production costs. Some 
of the nations which experienced hyperinflation highlighted that poor inflation would yield 
to political and social instability (Yolanda, 2017). 

Inflation is defined as an important macroeconomic imbalance manifested by a general 
growth in the price level over an interval of time, resulting in a constant decrease in the 
purchasing power of money. When there is a general rise in prices, each currency unit 
purchases fewer services and goods. As a result, inflation displays a decline in the 
purchasing power of the money (Csorba and Juravle, 2022). There are two main categories 
of inflation: demand pull inflation and cost push inflation. Demand pull inflation defines 
inflation where the root cause comes from the demand part. The constant growth in demand 
is determined by factors such as an increase in money supply, a growth in government 
purchase, increases in exports, etc. When demand is increased and it cannot be satisfied by 
a similar increase in supply, the general price level will raise and inflation will happen. On 
the other hand, cost push inflation, also called supply push inflation, happens due to a rise 
in the production cost. For instance, an increase of the raw materials price, a growth of 
wage rate, etc. The general price level of services and goods will increase when there is a 
rise of production costs within industries (Majumder, 2016).  

Monetary authorities have a main task of achieving price stability. They do this by issuing 
various forms of money, fixing an array of interest rates, generating fiscal revenues, 
outlining the unit of account, and influencing marginal costs of production through credit 
regulations, among other policies (Castillo-Martinez and Reis, 2019).  

The main goal of the National Bank of Romania (NBR) is to assure and maintain price 
stability, with monetary policy being employed under inflation targeting regime starting 
August 2005. In this situation, active communication of the central bank to the public at 
large represents an important role, and the crucial tool that the monetary authority utilizes 
to this end is the Inflation Report. Among other aspects, the Report highlights the National 
Bank of Romania’s (NBR) quarterly inflation forecast over an eight-quarter period, 
comprising the related uncertainties and risks. Also, it provides an examination of recent 
and future macroeconomic context from a monetary policy decision’s perspective.  

Unanticipated events such as the Coronavirus pandemic or the war in Ukraine have dire 
consequences on the economy. Therefore, central banks should keep inflation close to the 
target, not only to meet its main objective, but also to ensure the optimal function of the 
economy. Our study aims at forecasting the Romanian inflation rate using the 
Autoregressive Integrated Moving Average (ARIMA). Unlike other analyses which focus 
on forecasting the Consumer Price Index (CPI) through the ARIMA technique, this study 
comprises the actual values of the monthly inflation rate from 2018 to 2022. Furthermore, 
there are a few studies which consider the structural break issue and solve this in their 
analyses. To correct the structural break issue, we construct a dummy variable and include 
it in our econometric model.  
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2. Literature review 

Inflation is considered as one of the barometer tools to examine the health of an economy. 
A rate of inflation which is too high will diminish the level of social welfare. Conversely, 
a low rate of inflation shows an economy that does not function maximally, with an impact 
on slowing economic growth, increased poverty, and stagnant job formation. Considering 
these, inflation represents a macroeconomic problem that central banks should carefully 
consider.  

The main focus of monetary policy has generally been the maintenance of a low and stable 
inflation rate as defined by traditionally embraced measures, such as the Consumer Price 
Index (CPI). The fundamental justification for this goal is the extensive consensus, 
supported by various economic studies, which highlight that inflation is costly insofar since 
it weakens the real economic activity.  

Inflation forecasting represents a key aspect that the central bank of a country should 
consider when implementing monetary policies. Also, this plays an important role within 
the Eurozone, since a significant departure from the inflation target of a country might 
affect the stability of the Eurosystem. Therefore, given the likelihood of continuous 
differences in inflation levels across euro area currencies and the consequent impact on 
competitiveness, examining and understanding price developments in individual countries 
will remain of substantial importance.  

There are a number of techniques available for predicting economic time-series. However, 
this paper focuses on the ARIMA approach. The main findings of other authors using this 
method are presented below.  

Okafor and Shaibu (2013) deploy an univariate Autoregressive Integrated Moving-Average 
(ARIMA) econometric model for the Nigerian inflation rate and examine the prediction 
performance of the forecasted model between 1981 and 2010. Based on different selection 
evaluation and diagnostic criteria, the best model is chosen for the short-run prediction of 
Nigerian inflation rate. They discover that ARIMA (2, 2, 3) is the optimal model to use for 
forecasting. They confirm that the predicted inflation equation clearly shows that expected 
inflation represents a significant determinant of actual inflation within the estimation period.  

In order to estimate a time-series model, which encompasses monthly inflation data 
between January 1997 and August 2013, (Baciu, 2015) applies the Box-Jenkins 
methodology. The ARIMA (1, 1, 2) model is selected and the inflation rate prediction for 
September 2013 is made. The results of the study reveal that there is a significant difference 
between the actual inflation rate and the forecast made on the selected model. An ARIMA 
(1, 1, 2) model is also used to forecast inflation in Tanzania by using the Box-Jenkins 
ARRIMA approach and annual inflation data from 1966 to 2017. The results demonstrate 
that inflation rate in Tanzania is likely to follow an upward trend in the following decade. 
The study encourages policymakers to apply tight fiscal and monetary policy measures to 
handle inflation in Tanzania (Thabani, 2019a). A similar approach is followed to forecast 
inflation in the Philippines. In his analysis, (Thabani, 2019b) uses annual inflation data 
ranging from 1960 to 2017. He finds that an ARIMA (1, 1, 3) model is stable and acceptable 
for forecasting inflation level in the Philippines.  
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In an attempt to forecast the monthly inflation rate in Pakistan, (Salam et al., 2007) deploy 
different ARIMA models, and the candid one is proposed. Based on different diagnostic, 
selection and evaluation criteria, they select the best model for the short-term prediction. 
Also, Jafarian-Namin et al. (2021) focus on modelling and predicting the yearly inflation 
level in Iran from 1960 to 2019 using ARIMA models. Different models are examined and 
they find that non-seasonal ARIMA (1 ,0 ,0) is the right model to predict the inflation rate 
for the next years.  

 

3. Theoretical framework, methodology, and data source 

3.1. Basics of ARIMA 

Autoregressive Integrated Moving-Average (ARIMA) modelling represents a particular 
subset of univariate modelling, in which a time-series data is defined in terms of previous 
values of itself (the autoregressive element) and current and lagged values of an error term 
called "white noise" (the moving-average element).  

ARIMA methodology for predicting time-series data is essentially agnostic. Contrary to 
other methods, it does not consider any fundamental economic model or structural 
associations. It is considered that past values of the series and previous error terms include 
information for the objectives of forecasting. The major advantage of ARIMA prediction 
is that it requires data on the time-series under analysis only. Firstly, this characteristic is 
advantageous if predicting a significant number of time-series. Secondly, this avoids an 
issue that appears occasionally with multivariate models, for example, it might be possible 
that a consistent time-series is only available for a less period than the other series, limiting 
the period over which the econometric model is estimated. Thirdly, in multivariate 
modelling, data timeliness might be a problem.  

Also, this method includes several disadvantages. For example, some of the classic model 
identification methods are subjective and the trustworthiness of the selected model might 
depend on the experience and skill of the researcher (even though this criticism regularly 
applies to other modelling techniques as well). Another disadvantage refers to the fact that 
it is not embedded within any elemental theoretical model or structural relationships and 
therefore, the economic significance of the chosen model is not clear. Additionally, 
ARIMA models are basically "backward looking" and as such, they are normally poor at 
forecasting turning points, unless the turning point is a return to long-term equilibrium. 
However, ARIMA models have demonstrated to be relatively powerful, especially when 
producing short-run inflation predictions (Kenny et al., 1980). 

As highlighted by the authors Okafor and Shaibu (2013), the ARIMA modelling approach 
connects two different processes into one equation. The first characteristic defines an 
autoregressive process, while the second characteristic represents a moving-average. 
ARIMA modelling promotes an association between a particular time-series data and its 
own lagged values. 

A pth – order autoregressive expresses the dependent variable as a function of its past 
values, as in the following equation: 
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 Y୲ ൌ ϕ଴ ൅  ϕଵY୲ିଵ ൅ ϕଶY୲ିଶ ൅ ⋯ ൅  ϕ୮Y୲ି୮ ൅  ε୲                                                                      (1) 

Where 𝑌௧  represents the dependent variable predicted at time t; 𝑌௧ିଵ, 𝑌௧ିଶ, 𝑌௧ିଷ,  are the 
targets at time lags t-1, t-2, …, t-p; 𝜙଴, 𝜙ଵ, … , 𝜙௣ are the coefficients to be estimated; 𝜖௧ 
defines the error term at time t. 

A qth – order moving-average process defines a response variable, 𝑌௧, as a function of the 
lagged values of the q error terms, as in the following equation: 

Y୲ ൌ μ ൅  ε୲ ൅  θଵε୲ିଵ ൅ θଶε୲ିଶ ൅ ⋯ ൅  θ୯ε୲ି୯                                                                            (2) 

Where 𝑌௧  represents the dependent variable predicted at time t; 𝜇 displays the constant 
mean of the process; 𝜃଴, 𝜃ଵ, … , 𝜃௤  are the coefficients to be estimated; 𝜖௧  highlights the 
error term at time t; 𝜖௧ିଵ, 𝜖௧ିଶ, … , 𝜖௧ି௤ are the errors in the past period that are included in 
the response variable, 𝑌௧. 

To construct an ARIMA model, we start with an econometric equation, which contains no 
exogenous variables (𝑌௧ ൌ 𝛽௧ ൅  𝜖௧) and add to it both the autoregressive (AR) component 
and the moving-average (MA) component. Therefore, considering equations (1) and (2), 
the ARIMA (p, d, q) model takes the following form: 

𝑌௧ ൌ 𝛽଴ ൅ 𝜙ଵ𝑌௧ିଵ ൅ 𝜙ଶ𝑌௧ିଶ ൅ ⋯ ൅  𝜙௣𝑌௧ି௣ ൅  𝜀௧ ൅  𝜃ଵ𝜀௧ିଵ ൅ 𝜃ଶ𝜀௧ିଶ ൅ ⋯ ൅  𝜃௤𝜀௧ି௤  (3) 

Where the 𝜙𝑠 and 𝜃𝑠 represent the coefficients of the autoregressive and moving-average 
processes; d represents the order of integration of the series. 

In the ARIMA modelling and forecasting technique, we consider the following steps: 
1. The first step involves collecting and assessing graphically the data to be predicted. In 

this regard, an extensive time series data is asked for univariate time-series forecasting. 
It is generally recommended that at least 50 observations to be available. Using the Box-
Jenkins approach can be problematic if few observations are included. Unfortunately, 
although a large time-series is available, it is probable that the series incorporates a 
structural break, which might imply analyzing a subset of the entire dataset, or otherwise 
using dummy variables. Furthermore, graphically exploring the data is important. Data 
should be examined in levels, logarithms, and differences. These steps might reveal if 
there is an important seasonal pattern in the series, or if any structural breaks, outliers 
or data errors happen. One approach to examine the characteristics of a time-series is to 
plot its correlogram. However, even if the correlogram offers some indication as to 
whether series is stationary or not, formal tests for stationarity with known statistical 
properties are more appropriate.  

2. The second step refers to whether series is stationary or if differencing is required. Series 
under analysis must be stationary before identifying an appropriate ARIMA model. 
With this respect, Augmented Dickey-Fuller (ADF) test is performed. 

3. Once the data is concluded to be stationary, we seek to discover and estimate the optimal 
ARIMA model. Having identified the suitable order of differencing required to make 
the series stationary, the next step is to find the best form of ARIMA to model the 
stationary data. The traditional Box-Jenkins approach consists of a repetitive process of 
model identification, model estimation, as well as model evaluation. The Box-Jenkins 
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approach represents a quasi-formal method with model identification depending on the 
subjective assessment of correlograms and partial correlograms plots of the data.  

4. The next step involves checking if the model is a good one by deploying tests on the 
parameters and residuals of the model. It examines the statistical properties of the 
estimated ARIMA model in observing the model adequacy.  

5. The last step relates to the usage of the selected model. If the model does not violate the 
diagnostic tests’ requirements, then it can be utilized for forecasting.    

3.2. Methodology 

The research technique for this study is modelled according to the Box-Jenkins methodology 
(Box and Jenkins, 1976), which is typically applied to short-term forecasting of time-series 
events. The ARIMA model deployed in this study is expressed in equation 3 from above, in 
the defined time-series characteristics identified as (p, d, q), where p represents the order of 
the autoregressive (AR) component, d is the number of the differences applied on the series 
in order to become stationary, and q is the order of the moving-average (MA) component. 
This paper focuses on analyzing different ARIMA models based on monthly inflation data 
in Romania and use the most suitable one for prediction.  

3.3. Data source 

Data used in this analysis was collected from the YCharts database, encompassing a period 
between September 2018 and October 2022. This means that data contains 50 variables, 
which meets the requirement of univariate time-series modelling. EViews econometric 
software is used within the entire analysis.   
 

4. Results and discussions 

4.1. Visual examination of the series 

The first phase in modelling time-series is to investigate the structure of the data in order 
to get some preliminary information regarding stationarity of the series. Before applying 
formal tests, the graphs of the time-series under analysis are plotted. These plots offer initial 
knowledge about the possible nature of the time series.  

Figures show that there might be evidence of the presence of structural break in the series. 
Also, they highlight that building a model for the logarithmic values is likely to be more 
appropriate, since the modifications in the logarithmic series show a more stable variance 
than the modifications in the original series. The logarithm transformation helps stabilizing 
the variance of the series. 

To check if structural breaks exist within the series, we perform the Multiple Breakpoints 
Tests. 

Table 1. Multiple breakpoints tests 
Break Dates Sequential Repartition 
1 2021M10 2020M03 
2 2020M02 2021M03 
3 2021M03 2021M10 

Source: Authors’ own computations. 
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Table 1 shows that there are multiple structural breaks in the series. In order to keep the 
same sample size of 50 observations, we construct a dummy variable, which takes the value 
of 0 up until 2021M9 and value of 1 from 2021M10 onwards. The dummy variable is 
statistically significant and after including it in the regression, the null hypothesis of the 
CUSUMSQ test (𝐻଴: parameters are stable) is not rejected (the blue line lies within the red 
lines). Therefore, the problem of structural breaks is eliminated and we can proceed with 
testing the stationarity of the series. 

4.2. Unit root test 

Series must be stationary before it can be used to identify and estimate a model. With this 
respect, the Augmented Dickey-Fuller Test (ADF) help us identifying if data is stationary 
or not. The test results are presented in Table 2 below. 

Table 2. Augmented Dickey-Fuller test 
Variable Trend Specification Remark 
 Level First Difference  
LINFL -1.345034 -4.584306*** I(1) 

Note: *, **, *** denote statistical significance at 10%, 5%, and 1% levels. 
Source: Authors’ own computations. 

Results presented in Table 2 indicate that the ADF test statistic for the variable of interest 
is greater than the corresponding 95% critical values. Inflation variable became stationary 
after its first difference. 

4.3. Model identification, estimation, and interpretation 

The main objective of this paper is to assess inflation dynamics with ARIMA modelling 
technique. Since the logarithm of the inflation rate variable becomes stationary after taking 
the first order difference, the model that we are looking at is defined by ARIMA (p, 1, q). 
Next, we identify the best model, estimate appropriate parameters, perform diagnostic tests, 
and ultimately, forecast the inflation series. 

The following approach is applied in estimating the univariate ARIMA model. Firstly, 
inflation rate series is transformed to stabilize the variable. Secondly, tentative models are 
identified utilizing the autocorrelation function (ACF), together with the partial 
autocorrelation function (PACF), and estimated through the Ordinary Least Squares (OLS) 
method. Thirdly, the most performant model is selected considering the smallest values for 
the Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), the 
significance of the ARMA components, and the value of adjusted 𝑅ଶ. Fourthly, the selected 
model is estimated and diagnostic tests are performed. Ultimately, the estimated model is 
used to forecast inflation and the prediction performance is examined.  

4.3.1. ARIMA model identification 

We perform the series correlogram for the first difference, which consists of the ACF and 
PACF values. We notice the patterns in the ACF and PACF, and identify the values for the 
parameters p and q for the ARIMA model. The autocorrelation part from the correlogram 
defines the MA(q) component, while the partial autocorrelation part highlights the AR(p) 
component. Also, the parsimony characteristic is important, which means that including 
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more variables in the model will raise the model fit (𝑅ଶሻ, but at the cost of decreasing 
degrees of freedom. From the autocorrelation part, we select MA(1) and MA(7), while from 
the partial correlation part, AR(1) and AR(7) might be suitable. Therefore, there are four 
tentative models: ARIMA (1, 1, 1), ARIMA (7, 1, 1), ARIMA (1, 1, 7), and ARIMA  
(7, 1, 7). 

4.3.2. ARIMA model estimation 

After identifying the candidate models, it is a good practice to estimate each of them, then 
compare and select the most appropriate one. 

Table 3. The comparison of the candidate models 
Selection Criteria Model 
 ARIMA (1, 1, 1) ARIMA (1, 1, 7) ARIMA (7, 1, 1) ARIMA (7, 1, 7) 
Akaike Information 
Criterion (AIC) 

-1.333231 -1.370237 -1.397255 -1.242131 

Schwarz Criterion 
(SIC) 

-1.178797 -1.215803 -1.242821 -1.087697 

Hannan-Quinn 
Criterion (HQ) 

-1.274639 -1.311645 -1.338663 -1.183539 

Adjusted 𝑹𝟐 0.183632 0.222027 0.241532 0.121301 
Significance of the 
ARMA components 

p[AR(1)]=0.8138; 
p[MA(1)]=0.1118 

p[AR(1)]=0.0495; 
p[MA(7)]=0.0624 

p[AR(7)]=0.0512**; 
p[MA(1)]=0.0042* 

p[AR(7)]=0.9971; 
p[MA(7)]=0.5822 

Note: *, **, ** denote statistical significance at 10%, 5%, 1% levels. 
Source: authors’ own computations. 

The results in Table 3 indicate that ARIMA (7, 1, 1) is the appropriate one, since it has the 
lowest AIC, SIC, HQ, the ARMA components are significant, and adjusted  𝑅ଶ  is the 
highest. Therefore, it is reasonable to proceed with this model in our analysis.  

4.3.3. Diagnostic tests 

It is necessary to analyse the statistical properties of the estimated ARIMA model in 
observing the model adequacy. The model is tested for specification error, normality of the 
residuals, serial correlation, and heteroskedasticity. Additional checks will be made in 
order to see if the estimated AR(I)MA process is (covariance) stationary (if AR roots lie 
inside the unit circle) and if the estimated AR(I)MA process is invertible (if all MA roots 
lie inside the unit circle).  

Table 4. ARIMA (7, 1, 1) Diagnostic tests 
Test F-statistic P-value 
Jarque-Berra test 0.874403 0.645841 
Ramsey RESET test 0.104598 0.7479 
Breusch-Godfrey LM test 0.097736 0.9071 
Autoregressive Conditional 
Heteroskedasticity (ARCH) test 

1.035766 0.3141 

Source: Authors’ own computations. 
Table 5. Stationarity of the AR(I)MA process 

AR Root(s) Modulus 
-0.183580 േ 0.804316i 0.825000 
-0.743299 േ 0.357954i 0.825000 
0.514379 േ 0.645011i 0.825000 
0.825000 0.825000 
Conclusion: No root lie outside the unit circle  

Source: Authors’ own computations. 
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Table 6. Invertibility of the AR(I)MA process 
MA Root(s) Modulus 
-0.440065 0.440065 
Conclusion: No root lie outside the unit circle  

Source: Authors’ own computations. 

Results in Table 4 indicate that the model is well specified based on the Ramsey RESET 
test and serially uncorrelated on the basis of the Breusch-Godfrey serial correlation LM 
test. The Autoregressive Conditional Heteroskedasticity (ARCH) test shows that there is 
no fluctuation clustering in Romania’s inflation monthly data. Also, the Jarque-Berra (JB) 
test that the residuals are normally distributed.  

4.3.4. Forecast evaluation for ARIMA (7, 1, 1) model 

Next, we forecast the Romanian inflation rate using the ARIMA (7, 1, 1) model. The period 
of forecasts is from October 2021 to October 2022.  

Figure 1. The forecast of the inflation rate for the period October 2021 – October 2022 
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In Figure 1, the blue line is the forecast value of inflation. The red lines which are above 
and below the predicted monthly inflation rate display the forecast with േ2 of standard 
errors. Some prediction measurements such as the mean absolute error (MAE), root mean 
squared error (RMSE), and Theil inequality coefficient are presented. The estimated result 
for ARIMA in Figure 1 shows that the model is a good one.  

 

5. Conclusion 

In this paper, we present the ARIMA model and the steps required in order to make 
forecasts for a particular series. We discover that ARIMA (7, 1, 1) is the best one and hence, 
we use this model to forecast the monthly inflation rate in Romania. However, for a higher 
increase in the accuracy of the forecasts, we suggest two aspects to be considered for future 
research. The first one refers to using models from machine learning/deep learning area. 
Even if some of them are very complex and difficult to interpret, they ensure high 
performance of the models. There will be a trade-off between model efficiency and 
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interpretability. The second suggestion relates to an expansion of the sample size. This is 
also a pre-requisite for using complex algorithms, since these require hundreds even 
thousands of observations, depending on the algorithm type. We envisage that machine 
learning models will replace many traditional algorithms, which are currently used in the 
central bank area. However, we do not exclude the possibility of a mix use of traditional 
and machine learning models.  
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